

Copyright © 2025 The Author(s) : This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/)

International Journal of Scientific Research in Computer Science, Engineering

and Information Technology

ISSN : 2456-3307

Available Online at : www.ijsrcseit.com

doi : https://doi.org/10.32628/CSEIT251112374

3546

From Batch to Streaming: Building Real-time Inference

Pipelines for Machine Learning
Chirag Maheshwari

Courant Institute of Mathematical Sciences, New York University

A R T I C L E I N F O

A B S T R A C T

Article History:

Accepted : 23 Feb 2025

Published: 25 Feb 2025

 Modern machine learning applications are experiencing a fundamental shift from

traditional batch processing toward real-time inference pipelines, driven by the

increasing demand for timely and context-aware predictions. This article

comprehensively explores different training and serving architectures, ranging

from conventional batch processing to sophisticated streaming approaches. It

examines the evolution of ML pipelines, discussing the advantages and challenges

of various architectural patterns, including batch training with batch predictions,

batch training with streaming predictions, and fully streaming approaches. The

article delves into the implementation considerations for each architecture,

addressing critical challenges such as data freshness, concept drift, and model

degradation. It also explores continual learning systems, representing the cutting

edge of adaptive ML architectures. The article includes a detailed analysis of best

practices for implementation, covering architecture selection, system design

considerations, and operational excellence. Through this systematic examination,

Publication Issue

Volume 11, Issue 1

January-February-2025

Page Number

3546-3555

Volume 11, Issue 1, January-February-2025 | http://ijsrcseit.com

Chirag Maheshwari Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., January-February-2025, 11 (1) : 3546-3555

3547

the article provides practitioners with a structured framework for selecting and

implementing appropriate ML pipeline architectures based on their specific

requirements and constraints.

Keywords: Machine Learning Pipelines, Real-time Inference, Continual

Learning, Stream Processing, MLOps Architecture

Introduction

Modern machine learning applications are

fundamentally transforming how they process and

analyze data. The shift from traditional batch

processing to real-time analytics represents one of the

most significant changes in the machine learning

landscape, with organizations facing increasing

pressure to process and analyze data streams in real

time to maintain competitive advantage [1]. This

transition is particularly crucial as businesses seek to

leverage machine learning for immediate decision-

making and responsive customer experiences.

The evolution toward real-time processing has been

driven by the exponential growth in data generation

and the increasing sophistication of machine learning

applications [1]. Traditional batch processing,

historically operated on daily or hourly cycles, is

being supplemented or replaced by streaming

architectures that can process and analyze data as it

arrives. This transformation reshapes how

organizations approach data processing and decision-

making, particularly in time-sensitive applications [2].

The real-time analytics market has shown a

remarkable growth trajectory, driven by the

increasing adoption of IoT devices and the rise of

digital transformation initiatives across industries [2].

North America maintains a dominant position in this

market due to its advanced technological

infrastructure and early adoption of innovative

solutions, while other regions are rapidly expanding

their real-time analytics capabilities [2]. This growth

is supported by the proliferation of cloud computing

services and the advancement of edge computing

technologies, making real-time processing more

accessible and cost-effective for organizations of all

sizes.

Implementing real-time ML systems presents unique

challenges in data quality, system reliability, and

processing efficiency [1]. Organizations must carefully

balance the trade-offs between data freshness and

processing complexity while ensuring their systems

can handle the increased computational demands of

real-time analysis. Maintaining data quality while

processing it at high speeds requires sophisticated

monitoring and validation systems [1].

Financial services institutions have emerged as early

adopters of real-time ML processing, implementing

systems for fraud detection and trading algorithms

that must operate with minimal latency [2]. In

manufacturing, the Industrial Internet of Things (IIoT)

has driven the adoption of real-time analytics for

predictive maintenance and quality control, while

healthcare organizations are leveraging real-time

processing for patient monitoring and diagnostic

support [1].

The transition from batch to streaming architectures

manifests in several distinct patterns, each

representing a different balance between processing

immediacy and implementation complexity [1].

While still valuable for specific applications,

traditional batch processing is augmented by hybrid

approaches combining periodic training with real-

time inference. The selection of appropriate

architecture depends heavily on particular use cases

and organizational requirements [2].

Volume 11, Issue 1, January-February-2025 | http://ijsrcseit.com

Chirag Maheshwari Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., January-February-2025, 11 (1) : 3546-3555

3548

Understanding these approaches becomes increasingly

critical as organizations evolve their ML

infrastructure [1]. The success of real-time ML

implementations relies on technical architecture,

organizational readiness, and precise alignment with

business objectives [2]. This evolution represents a

significant shift in how organizations approach

machine learning, requiring new skills, tools, and

methodologies to leverage real-time capabilities

effectively.

Understanding the Evolution of ML Pipelines

The evolution of machine learning pipelines from

batch to streaming architectures represents a

fundamental shift in how organizations process and

utilize data for predictive analytics. This

transformation has been driven by the complex

challenges of real-time feature engineering, data

freshness, and the need to maintain consistent

performance across varying data volumes [3]. While

still relevant for specific use cases, the traditional

batch-processing approach is increasingly being

complemented or replaced by streaming architectures

that can handle continuous data flows and provide

immediate insights.

The journey toward real-time ML processing has

introduced new challenges in data processing and

system architecture. Organizations must address

issues such as feature consistency between training

and serving, handling out-of-order events, and

managing the complexity of real-time feature

computation [3]. These challenges become

particularly acute when dealing with time-window

aggregations and ensuring that features computed in

real time match those used during model training.

Stream processing has emerged as a critical paradigm

for handling continuous data flows, offering

advantages regarding data freshness and processing

latency [4]. Unlike batch processing, which operates

on fixed chunks of historical data, stream processing

enables organizations to process data as it arrives,

leading to more timely insights and faster decision-

making capabilities. This approach has become

particularly valuable in use-cases requiring immediate

action based on incoming data patterns.

Modern ML pipelines must balance the trade-offs

between batch and stream processing approaches [4].

While stream processing offers benefits in terms of

data freshness and reduced latency, it also introduces

additional complexity in system design and

maintenance. Organizations must consider data

consistency, processing guarantees, and system

scalability when choosing between batch and

streaming approaches for their specific use cases.

The implementation of real-time ML pipelines

requires careful attention to system architecture and

data management practices [3]. Organizations must

address challenges such as maintaining feature stores

that can handle batch and streaming computations,

ensuring consistent feature definitions across different

processing paradigms, and managing the complexity

of deploying models in real-time environments. These

technical considerations are coupled with operational

challenges such as monitoring system performance

and maintaining data quality in a streaming context

[4].

In the following sections, we detail three major

architectural paradigms—batch training with batch

predictions, batch training with streaming predictions,

and fully streaming (stream training with stream

predictions)—before discussing the advanced concept

of continual learning.

Volume 11, Issue 1, January-February-2025 | http://ijsrcseit.com

Chirag Maheshwari Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., January-February-2025, 11 (1) : 3546-3555

3549

Batch Training with Batch Predictions

The traditional approach to machine learning

deployment—where both training and inference

(predictions) occur in scheduled batches—continues

to serve as a foundational architecture in many

organizations. By processing data in bulk at regular

intervals (e.g., nightly or weekly), teams can simplify

operational workloads and dedicate well-defined

windows for data validation, model retraining, and

large-scale inference jobs. [5].

One of the primary strengths of batch processing lies

in its ability to handle large datasets efficiently.

Organizations can effectively manage memory

constraints by processing data in predetermined batch

sizes while maintaining training stability. This

approach is particularly beneficial when dealing with

deep learning models, where batch normalization and

other batch-dependent techniques play crucial roles

in model performance [5]. The architecture's

systematic nature allows for better control over the

training process and more consistent model updates.

The batch training approach provides significant

advantages regarding computational efficiency and

resource utilization. When processing data in batches,

systems can optimize memory usage and use parallel

processing capabilities [6]. This becomes particularly

important in large-scale data processing scenarios,

where efficient resource management is crucial for

maintaining system performance and controlling

operational costs.

In practical applications, batch processing

demonstrates its value through reliability and

predictability. The architecture excels in scenarios

where immediate real-time results aren't critical, such

as periodic reporting systems and offline analytics [6].

By processing data in scheduled intervals,

organizations can ensure thorough data validation and

quality checks, making it particularly suitable for

applications requiring high accuracy and

comprehensive error checking.

Systematic batch processing provides natural support

for model evaluation and validation. Data scientists

can implement thorough testing procedures and

maintain detailed performance metrics across

different batches [5]. This becomes especially valuable

when model stability and predictable performance are

prioritized over real-time responsiveness. The

architecture naturally accommodates comprehensive

testing protocols and validation procedures.

However, organizations must carefully consider the

inherent trade-offs of batch-processing architectures

[6]. While batch processing offers advantages in terms

of efficiency and stability, it introduces latency

between data collection and result generation. This

delay makes it less suitable for applications requiring

immediate responses or real-time decision-making.

Additionally, batch operations require careful

scheduling and resource allocation to manage periodic

processing loads effectively.

An example use case: A retail company that generates

product recommendations once per day. Overnight,

the system performs feature engineering on all sales

and clickstream data from the previous day, trains or

retrains the model, and uploads the resulting

recommendations to the production database. This

schedule ensures stable performance without the

complexity of real-time data ingestion and inference,

making it ideal for organizations that do not require

immediate updates.

Volume 11, Issue 1, January-February-2025 | http://ijsrcseit.com

Chirag Maheshwari Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., January-February-2025, 11 (1) : 3546-3555

3550

Batch Training with Streaming Predictions

The hybrid approach of combining batch training and

real-time (streaming) predictions is gaining traction

for its ability to bridge the gap between stable, offline

model updates and immediate, low-latency inference.

Organizations can maintain robust model quality by

periodically retraining a model on large historical

datasets and leveraging cost-efficient batch processes.

At the same time, they can serve near real-time

predictions using the latest streaming data, ensuring

responsive decision-making. [7].

The foundation of this hybrid architecture relies on a

well-structured feature engineering pipeline that can

handle batch and streaming data effectively. The

pipeline must address several key aspects: feature

definition and computation, data validation and

testing, and monitoring of feature distributions. The

implementation typically involves creating reusable

feature transformation components that can be

applied consistently across batch training and real-

time serving scenarios [7].

A crucial component of this architecture is the feature

store, which serves as a central repository for

managing feature definitions and computations. The

feature store must handle batch-computed features

from historical data and real-time feature

computations, ensuring that features remain

consistent between training and serving

environments. This includes maintaining proper

versioning of feature definitions and providing

mechanisms for feature sharing across different

models and applications [7].

Data validation plays a vital role in maintaining the

reliability of the hybrid system. The architecture must

implement robust validation procedures to detect data

quality issues and distribution shifts in batch and

streaming contexts. This includes setting up

automated testing frameworks that validate feature

computations and ensuring that feature distributions

remain consistent between training and serving

environments [7].

Implementing this hybrid approach requires careful

attention to system design and operational

considerations. Organizations must establish clear

protocols for feature development, testing, and

deployment. This includes implementing

comprehensive testing strategies covering batch and

streaming components and ensuring that feature

computations remain consistent across different

processing modes [7].

Monitoring becomes a critical aspect of maintaining

system health in this hybrid architecture.

Organizations must implement monitoring systems

that can track feature distributions, detect data quality

issues, and identify potential performance degradation.

This includes setting up alerts for significant

deviations in feature distributions and maintaining

detailed logs of feature computation processes [7].

An example use-case: Consider an e-commerce

company that retrains its recommendation model

nightly using a batch pipeline that processes historical

transactions. The newly trained model is then

deployed to an online inference endpoint. Meanwhile,

real-time user actions (product views, clicks) are fed

into a streaming feature pipeline that generates

predictions on the fly. Thanks to a shared feature

store, the transformations used to generate user/item

features in the batch pipeline are identical to those

used during real-time inference, ensuring consistent

and accurate recommendations.

This approach allows the business to combine the

accuracy benefits of training on rich historical data

with the agility of real-time inference, ultimately

delivering personalized experiences to end users

without incurring the complexities of continuous

online model updates.

Volume 11, Issue 1, January-February-2025 | http://ijsrcseit.com

Chirag Maheshwari Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., January-February-2025, 11 (1) : 3546-3555

3551

Stream Training with Stream Prediction

Stream training with stream prediction represents the

most advanced approach to real-time machine

learning, enabling continuous model updates

alongside immediate inference. Rather than relying

on static, periodically retrained models, online

learning algorithms process new data as soon as it

arrives, incrementally refining model parameters and

drastically reducing the time between data ingestion

and model improvement. [8]. The fully streaming

approach requires sophisticated infrastructure and

careful system design to maintain reliability and

performance across various use cases.

The fundamental architecture of a streaming ML

system relies on key capabilities provided by stream

processing frameworks. Apache Flink's stateful stream

processing enables organizations to maintain and

update model states efficiently while processing

incoming data streams. The framework's ability to

handle event time processing and late-arriving data

makes it particularly suitable for real-world

applications where data arrival patterns may be

unpredictable [8]. These capabilities become crucial

when implementing online learning algorithms that

must update model parameters incrementally.

Modern stream processing architectures must address

several architectural challenges to maintain reliable

performance in production environments. Integrating

machine learning models into streaming pipelines

introduces complexities around model serving,

versioning, and monitoring [9]. Organizations must

carefully consider managing the model lifecycle,

handling model updates, and maintaining consistent

performance across distributed serving instances

while dealing with the inherent challenges of stream

processing.

Performance monitoring in streaming ML systems

requires specialized approaches that differ

significantly from traditional batch processing

scenarios. The architecture must support real-time

tracking of both system health and model

performance metrics [9]. This includes tracking data

distribution shifts, detecting anomalies in model

predictions, and maintaining visibility into the stream

processing pipeline's performance characteristics,

such as throughput and latency.

The implementation of streaming ML systems must

address several technical challenges inherent to real-

time processing. Apache Flink's checkpointing

mechanism helps ensure fault tolerance and state

consistency, which becomes crucial when

maintaining model state across distributed

environments [8]. The system must also implement

appropriate windowing strategies to handle time-

based aggregations and feature computations while

efficiently processing out-of-order events.

Volume 11, Issue 1, January-February-2025 | http://ijsrcseit.com

Chirag Maheshwari Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., January-February-2025, 11 (1) : 3546-3555

3552

Organizations implementing streaming ML

architectures face challenges related to data quality,

model stability, and system scalability [9]. The

architecture must incorporate robust validation

procedures that can operate in real-time, implement

appropriate error-handling mechanisms, and maintain

system reliability under varying load conditions. This

includes developing strategies for handling edge cases,

managing resource utilization, and ensuring

consistent model performance across different

deployment scenarios.

An example use-case: A fraud detection system ingests

millions of transactions per day. Each incoming

transaction event is processed using a streaming

framework such as Apache Flink to extract features

(e.g., transaction amount and user velocity).

Incrementally updates a classifier with online

learning methods. With every checkpoint, the model

state is saved, ensuring fault tolerance. Because the

model updates continuously, it quickly adapts to

emerging fraud patterns instead of waiting for an

overnight batch job. As a result, latency is minimized,

and the system remains resilient to constantly shifting

transaction behaviors. By combining real-time feature

engineering with incremental model updates, stream

training with stream prediction allows organizations

to act on evolving data patterns immediately, keeping

the model relevant and responsive in high-velocity

domains where every second of delay can be costly.

Continual Learning Systems

Continual learning represents an adaptive approach to

machine learning where systems can learn from a

continuous stream of data while maintaining

performance on previously learned tasks. This

methodology addresses the fundamental challenge of

learning in dynamic environments where data

distributions evolve. Modern continual learning

systems must balance the stability-plasticity dilemma,

ensuring that models can acquire new knowledge

without compromising their existing capabilities [10].

The core strength of continual learning systems lies in

their ability to adapt to concept drift and distribution

shifts while maintaining model performance. These

systems employ sophisticated mechanisms to prevent

catastrophic forgetting, which occurs when new

learning interferes with previously acquired

knowledge. Research has shown that careful

management of model parameters and selective

synaptic plasticity can help maintain performance

across different tasks while allowing for continued

learning [10]. This balance is crucial for maintaining

system reliability in production environments.

Implementing effective continual learning systems

requires careful consideration of practical deployment

aspects in production environments. Organizations

must develop robust monitoring systems that track

model performance and learning dynamics over time

Volume 11, Issue 1, January-February-2025 | http://ijsrcseit.com

Chirag Maheshwari Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., January-February-2025, 11 (1) : 3546-3555

3553

[11]. This includes implementing sophisticated

metrics for detecting concept drift, measuring

catastrophic forgetting, and evaluating the system's

ability to maintain performance across different tasks

and periods.

Production deployment of continual learning systems

demands specialized architectures that can handle the

complexities of incremental learning. These systems

must incorporate mechanisms for efficient parameter

updates and knowledge retention, often utilizing

techniques such as experience replay or elastic weight

consolidation [11]. The architecture must also include

robust evaluation frameworks that assess immediate

performance and long-term learning stability.

Monitoring becomes particularly critical in continual

learning contexts, as systems must track not only

current performance but also the evolution of model

behavior over time. Organizations must implement

comprehensive monitoring solutions that detect

various types of drift, including feature, concept, and

label drift [10]. This monitoring infrastructure must

be capable of triggering appropriate interventions

when significant deviations are detected.

The success of continual learning systems in

production environments depends heavily on

adequately implementing fallback mechanisms and

safety protocols. Organizations must establish clear

procedures for handling performance degradation and

implementing model rollbacks when necessary [11].

This includes maintaining versions of well-

performing models that can be deployed quickly if the

continually learning system encounters issues.

Best Practices for Implementation

Implementing machine learning systems in

production environments requires a systematic

approach to MLOps practices and design patterns.

Organizations must establish robust processes for

developing, deploying, and maintaining ML systems

while ensuring reliability, scalability, and operational

efficiency [12].

7.1. Architecture Selection

The foundation of successful ML system

implementation begins with MLOps practices that

emphasize automation and reproducibility.

Organizations must establish transparent processes for

continuous integration and continuous delivery

(CI/CD) of machine learning models, ensuring that

model deployment and updates can be handled

efficiently and reliably [12]. This includes

implementing automated testing and validation

procedures to verify model performance before

deployment.

Data pipeline architecture plays a crucial role in

successful ML implementations. Teams must

implement robust data versioning and feature

engineering practices that ensure reproducibility and

traceability of model training [13]. This includes

establishing transparent processes for data validation,

feature computation, and model validation that can

scale with increasing data volumes and complexity.

Organizations must also consider the operational

aspects of their ML architecture. This includes

implementing proper monitoring and logging systems

that track model performance, data quality, and

system health [12]. The architecture should support

automated retraining pipelines that update models

when performance degrades, or new data patterns

emerge.

7.2. System Design Considerations

Effective system design in ML requires careful

attention to technical and operational requirements.

Modern ML systems must implement comprehensive

monitoring capabilities that can track model accuracy,

feature distributions, prediction latency, and system

resource utilization [13]. This includes setting up

proper logging frameworks to help diagnose issues

and track system behavior over time.

Scalability considerations must be embedded in the

system design from the start. This includes

implementing proper model-serving infrastructure

that can handle varying loads and implementing

feature stores that can serve features efficiently for

Volume 11, Issue 1, January-February-2025 | http://ijsrcseit.com

Chirag Maheshwari Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., January-February-2025, 11 (1) : 3546-3555

3554

training and inference [12]. The design should also

include proper testing frameworks to validate model

performance across different scenarios and data

distributions.

Version control in ML systems extends beyond

traditional code versioning, including model artifacts,

data schemas, and hyperparameters. Organizations

must implement MLOps practices that ensure

reproducibility of model training and deployment

[13]. This includes maintaining proper documentation

of model architectures, feature definitions, and

deployment configurations.

7.3. Operational Excellence

Operational excellence in ML systems requires robust

monitoring, maintenance, and continuous

improvement processes. Organizations must

implement comprehensive monitoring systems to

detect model drift, data quality, and system

performance problems [12]. This includes setting up

appropriate alerting mechanisms to notify teams

when interventions are needed.

Performance metrics and service level objectives

(SLOs) must be clearly defined and monitored. This

includes tracking technical metrics like prediction

latency and business metrics that measure the actual

impact of ML models [13]. Organizations should

implement proper capacity planning procedures that

ensure sufficient resources are available for training

and serving workloads.

Security and governance considerations must be

integrated throughout the ML lifecycle. This includes

implementing proper access controls, audit logging,

and model governance practices [12]. Organizations

should establish transparent processes for model

validation, deployment approval, and ongoing

monitoring of model performance and behavior.

Conclusion

The evolution from batch to streaming machine

learning pipelines represents a transformative shift in

how organizations approach real-time decision-

making and model deployment. While traditional

batch processing continues to serve essential use cases,

the emergence of hybrid and streaming architectures

has expanded the possibilities for real-time inference

and continuous learning. Success in implementing

these systems requires careful consideration of various

factors, including data characteristics, operational

requirements, and organizational capabilities. As the

field continues to mature, we observe increasing

convergence between different architectural

approaches, with organizations adopting hybrid

solutions that combine the benefits of both batch and

streaming paradigms. The key to successful

implementation lies in understanding the inherent

trade-offs between different approaches and selecting

architectures that align with specific use cases while

maintaining an appropriate balance between

complexity and maintainability.

References

[1]. Nina Zumel, "Real-Time Data in Machine

Learning: Challenges and Solutions,"

Dataversity, 2022. [Online]. Available:

https://www.dataversity.net/real-time-data-in-

machine-learning-challenges-and-solutions/

[2]. Aarti Dhapte, "Real-Time Analytics Market

Research Report: By Application (Marketing

Analytics, Financial Analytics, Operational

Analytics, Customer Analytics, Supply Chain

Analytics), By Deployment Model (On-

Premises, Cloud-Based, Hybrid), By Technology

(Streaming Analytics, Complex Event

Processing, Data Mining, Data Warehousing),

By End Use (Retail, Healthcare, Manufacturing,

Telecommunications, Banking and Financial

Services) and By Regional (North America,

Europe, South America, Asia Pacific, Middle

East and Africa) - Forecast to 2034," Market

Research Future, Feb. 2025. [Online]. Available:

https://www.marketresearchfuture.com/reports

/real-time-analytics-market-37074

Volume 11, Issue 1, January-February-2025 | http://ijsrcseit.com

Chirag Maheshwari Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., January-February-2025, 11 (1) : 3546-3555

3555

[3]. Nick Parsons and Aditya Nambiar, "Challenges

of Building Realtime Machine Learning

Pipelines," Fennel.ai, 2022. [Online]. Available:

https://fennel.ai/blog/challenges-of-building-

realtime-ml-pipelines/

[4]. Daniel Greenberg, "Optimizing Data Pipelines:

Understanding Batch Processing vs. Stream

Processing," Rivery, Jan. 2025. [Online].

Available: https://rivery.io/blog/batch-vs-

stream-processing-pros-and-cons-2/

[5]. CloudFactory, "Everything you need to know

about batches in Machine Learning,"

CloudFactory. [Online]. Available:

https://wiki.cloudfactory.com/docs/mp-

wiki/training-parameters/everything-you-need-

to-know-about-batches-in-machine-learning

[6]. GeeksforGeeks, "What is the difference

between batch processing and real-time

processing?" GeeksforGeeks, 2024. [Online].

Available:

https://www.geeksforgeeks.org/what-is-the-

difference-between-batch-processing-and-real-

time-processing/

[7]. Paul Iusztin, "A Framework for Building a

Production-Ready Feature Engineering

Pipeline," Towards Data Science, 2023.

[Online]. Available:

https://towardsdatascience.com/a-framework-

for-building-a-production-ready-feature-

engineering-pipeline-f0b29609b20f/

[8]. Sahil Sharma, "Apache Flink for Real-Time

Stream Processing," Medium, 2023. [Online].

Available:

https://medium.com/@DataEngineeer/apache-

flink-for-real-time-stream-processing-

e83335a70cfe

[9]. Chip Huyen, "Real-Time Machine Learning:

Architecture and Challenges," InfoQ, 2022.

[Online]. Available:

https://www.infoq.com/presentations/ml-arch-

challenges/

[10]. Liyuan Wang, Xingxing Zhang, Hang Su, and

Jun Zhu, "A Comprehensive Survey of

Continual Learning: Theory, Method and

Application," 2023. [Online]. Available:

https://arxiv.org/abs/2302.00487

[11]. Vincenzo Lomonaco, "Continual Learning for

Production Systems," Medium - Continual AI,

Medium, 2019. [Online]. Available:

https://medium.com/continual-ai/continual-

learning-for-production-systems-304cc9f60603

[12]. AWS, "What is MLOps?," AWS. [Online].

Available: https://aws.amazon.com/what-

is/mlops/

[13]. Eugeneyan, "More Design Patterns For Machine

Learning Systems," Eugene Yan's Blog, 2023.

[Online]. Available:

https://eugeneyan.com/writing/more-patterns/

