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 Modern machine learning applications are experiencing a fundamental shift from 

traditional batch processing toward real-time inference pipelines, driven by the 

increasing demand for timely and context-aware predictions. This article 

comprehensively explores different training and serving architectures, ranging 

from conventional batch processing to sophisticated streaming approaches. It 

examines the evolution of ML pipelines, discussing the advantages and challenges 

of various architectural patterns, including batch training with batch predictions, 

batch training with streaming predictions, and fully streaming approaches. The 

article delves into the implementation considerations for each architecture, 

addressing critical challenges such as data freshness, concept drift, and model 

degradation. It also explores continual learning systems, representing the cutting 

edge of adaptive ML architectures. The article includes a detailed analysis of best 

practices for implementation, covering architecture selection, system design 

considerations, and operational excellence. Through this systematic examination, 
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the article provides practitioners with a structured framework for selecting and 

implementing appropriate ML pipeline architectures based on their specific 

requirements and constraints. 

Keywords: Machine Learning Pipelines, Real-time Inference, Continual 

Learning, Stream Processing, MLOps Architecture 

 

Introduction 

Modern machine learning applications are 

fundamentally transforming how they process and 

analyze data. The shift from traditional batch 

processing to real-time analytics represents one of the 

most significant changes in the machine learning 

landscape, with organizations facing increasing 

pressure to process and analyze data streams in real 

time to maintain competitive advantage [1]. This 

transition is particularly crucial as businesses seek to 

leverage machine learning for immediate decision-

making and responsive customer experiences. 

The evolution toward real-time processing has been 

driven by the exponential growth in data generation 

and the increasing sophistication of machine learning 

applications [1]. Traditional batch processing, 

historically operated on daily or hourly cycles, is 

being supplemented or replaced by streaming 

architectures that can process and analyze data as it 

arrives. This transformation reshapes how 

organizations approach data processing and decision-

making, particularly in time-sensitive applications [2]. 

The real-time analytics market has shown a 

remarkable growth trajectory, driven by the 

increasing adoption of IoT devices and the rise of 

digital transformation initiatives across industries [2]. 

North America maintains a dominant position in this 

market due to its advanced technological 

infrastructure and early adoption of innovative 

solutions, while other regions are rapidly expanding 

their real-time analytics capabilities [2]. This growth 

is supported by the proliferation of cloud computing 

services and the advancement of edge computing 

technologies, making real-time processing more 

accessible and cost-effective for organizations of all 

sizes. 

Implementing real-time ML systems presents unique 

challenges in data quality, system reliability, and 

processing efficiency [1]. Organizations must carefully 

balance the trade-offs between data freshness and 

processing complexity while ensuring their systems 

can handle the increased computational demands of 

real-time analysis. Maintaining data quality while 

processing it at high speeds requires sophisticated 

monitoring and validation systems [1]. 

Financial services institutions have emerged as early 

adopters of real-time ML processing, implementing 

systems for fraud detection and trading algorithms 

that must operate with minimal latency [2]. In 

manufacturing, the Industrial Internet of Things (IIoT) 

has driven the adoption of real-time analytics for 

predictive maintenance and quality control, while 

healthcare organizations are leveraging real-time 

processing for patient monitoring and diagnostic 

support [1]. 

The transition from batch to streaming architectures 

manifests in several distinct patterns, each 

representing a different balance between processing 

immediacy and implementation complexity [1]. 

While still valuable for specific applications, 

traditional batch processing is augmented by hybrid 

approaches combining periodic training with real-

time inference. The selection of appropriate 

architecture depends heavily on particular use cases 

and organizational requirements [2]. 
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Understanding these approaches becomes increasingly 

critical as organizations evolve their ML 

infrastructure [1]. The success of real-time ML 

implementations relies on technical architecture, 

organizational readiness, and precise alignment with 

business objectives [2]. This evolution represents a 

significant shift in how organizations approach 

machine learning, requiring new skills, tools, and 

methodologies to leverage real-time capabilities 

effectively. 

 

Understanding the Evolution of ML Pipelines 

The evolution of machine learning pipelines from 

batch to streaming architectures represents a 

fundamental shift in how organizations process and 

utilize data for predictive analytics. This 

transformation has been driven by the complex 

challenges of real-time feature engineering, data 

freshness, and the need to maintain consistent 

performance across varying data volumes [3]. While 

still relevant for specific use cases, the traditional 

batch-processing approach is increasingly being 

complemented or replaced by streaming architectures 

that can handle continuous data flows and provide 

immediate insights. 

The journey toward real-time ML processing has 

introduced new challenges in data processing and 

system architecture. Organizations must address 

issues such as feature consistency between training 

and serving, handling out-of-order events, and 

managing the complexity of real-time feature 

computation [3]. These challenges become 

particularly acute when dealing with time-window 

aggregations and ensuring that features computed in 

real time match those used during model training. 

Stream processing has emerged as a critical paradigm 

for handling continuous data flows, offering 

advantages regarding data freshness and processing 

latency [4]. Unlike batch processing, which operates 

on fixed chunks of historical data, stream processing 

enables organizations to process data as it arrives, 

leading to more timely insights and faster decision-

making capabilities. This approach has become 

particularly valuable in use-cases requiring immediate 

action based on incoming data patterns. 

Modern ML pipelines must balance the trade-offs 

between batch and stream processing approaches [4]. 

While stream processing offers benefits in terms of 

data freshness and reduced latency, it also introduces 

additional complexity in system design and 

maintenance. Organizations must consider data 

consistency, processing guarantees, and system 

scalability when choosing between batch and 

streaming approaches for their specific use cases. 

The implementation of real-time ML pipelines 

requires careful attention to system architecture and 

data management practices [3]. Organizations must 

address challenges such as maintaining feature stores 

that can handle batch and streaming computations, 

ensuring consistent feature definitions across different 

processing paradigms, and managing the complexity 

of deploying models in real-time environments. These 

technical considerations are coupled with operational 

challenges such as monitoring system performance 

and maintaining data quality in a streaming context 

[4]. 

In the following sections, we detail three major 

architectural paradigms—batch training with batch 

predictions, batch training with streaming predictions, 

and fully streaming (stream training with stream 

predictions)—before discussing the advanced concept 

of continual learning. 
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Batch Training with Batch Predictions 

The traditional approach to machine learning 

deployment—where both training and inference 

(predictions) occur in scheduled batches—continues 

to serve as a foundational architecture in many 

organizations. By processing data in bulk at regular 

intervals (e.g., nightly or weekly), teams can simplify 

operational workloads and dedicate well-defined 

windows for data validation, model retraining, and 

large-scale inference jobs. [5]. 

One of the primary strengths of batch processing lies 

in its ability to handle large datasets efficiently. 

Organizations can effectively manage memory 

constraints by processing data in predetermined batch 

sizes while maintaining training stability. This 

approach is particularly beneficial when dealing with 

deep learning models, where batch normalization and 

other batch-dependent techniques play crucial roles 

in model performance [5]. The architecture's 

systematic nature allows for better control over the 

training process and more consistent model updates. 

The batch training approach provides significant 

advantages regarding computational efficiency and 

resource utilization. When processing data in batches, 

systems can optimize memory usage and use parallel 

processing capabilities [6]. This becomes particularly 

important in large-scale data processing scenarios, 

where efficient resource management is crucial for 

maintaining system performance and controlling 

operational costs. 

In practical applications, batch processing 

demonstrates its value through reliability and 

predictability. The architecture excels in scenarios 

where immediate real-time results aren't critical, such 

as periodic reporting systems and offline analytics [6]. 

By processing data in scheduled intervals, 

organizations can ensure thorough data validation and 

quality checks, making it particularly suitable for 

applications requiring high accuracy and 

comprehensive error checking. 

Systematic batch processing provides natural support 

for model evaluation and validation. Data scientists 

can implement thorough testing procedures and 

maintain detailed performance metrics across 

different batches [5]. This becomes especially valuable 

when model stability and predictable performance are 

prioritized over real-time responsiveness. The 

architecture naturally accommodates comprehensive 

testing protocols and validation procedures. 

However, organizations must carefully consider the 

inherent trade-offs of batch-processing architectures 

[6]. While batch processing offers advantages in terms 

of efficiency and stability, it introduces latency 

between data collection and result generation. This 

delay makes it less suitable for applications requiring 

immediate responses or real-time decision-making. 

Additionally, batch operations require careful 

scheduling and resource allocation to manage periodic 

processing loads effectively. 

An example use case: A retail company that generates 

product recommendations once per day. Overnight, 

the system performs feature engineering on all sales 

and clickstream data from the previous day, trains or 

retrains the model, and uploads the resulting 

recommendations to the production database. This 

schedule ensures stable performance without the 

complexity of real-time data ingestion and inference, 

making it ideal for organizations that do not require 

immediate updates. 
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Batch Training with Streaming Predictions 

The hybrid approach of combining batch training and 

real-time (streaming) predictions is gaining traction 

for its ability to bridge the gap between stable, offline 

model updates and immediate, low-latency inference. 

Organizations can maintain robust model quality by 

periodically retraining a model on large historical 

datasets and leveraging cost-efficient batch processes. 

At the same time, they can serve near real-time 

predictions using the latest streaming data, ensuring 

responsive decision-making. [7]. 

The foundation of this hybrid architecture relies on a 

well-structured feature engineering pipeline that can 

handle batch and streaming data effectively. The 

pipeline must address several key aspects: feature 

definition and computation, data validation and 

testing, and monitoring of feature distributions. The 

implementation typically involves creating reusable 

feature transformation components that can be 

applied consistently across batch training and real-

time serving scenarios [7]. 

A crucial component of this architecture is the feature 

store, which serves as a central repository for 

managing feature definitions and computations. The 

feature store must handle batch-computed features 

from historical data and real-time feature 

computations, ensuring that features remain 

consistent between training and serving 

environments. This includes maintaining proper 

versioning of feature definitions and providing 

mechanisms for feature sharing across different 

models and applications [7]. 

Data validation plays a vital role in maintaining the 

reliability of the hybrid system. The architecture must 

implement robust validation procedures to detect data 

quality issues and distribution shifts in batch and 

streaming contexts. This includes setting up 

automated testing frameworks that validate feature 

computations and ensuring that feature distributions 

remain consistent between training and serving 

environments [7]. 

Implementing this hybrid approach requires careful 

attention to system design and operational 

considerations. Organizations must establish clear 

protocols for feature development, testing, and 

deployment. This includes implementing 

comprehensive testing strategies covering batch and 

streaming components and ensuring that feature 

computations remain consistent across different 

processing modes [7]. 

Monitoring becomes a critical aspect of maintaining 

system health in this hybrid architecture. 

Organizations must implement monitoring systems 

that can track feature distributions, detect data quality 

issues, and identify potential performance degradation. 

This includes setting up alerts for significant 

deviations in feature distributions and maintaining 

detailed logs of feature computation processes [7]. 

An example use-case: Consider an e-commerce 

company that retrains its recommendation model 

nightly using a batch pipeline that processes historical 

transactions. The newly trained model is then 

deployed to an online inference endpoint. Meanwhile, 

real-time user actions (product views, clicks) are fed 

into a streaming feature pipeline that generates 

predictions on the fly. Thanks to a shared feature 

store, the transformations used to generate user/item 

features in the batch pipeline are identical to those 

used during real-time inference, ensuring consistent 

and accurate recommendations. 

This approach allows the business to combine the 

accuracy benefits of training on rich historical data 

with the agility of real-time inference, ultimately 

delivering personalized experiences to end users 

without incurring the complexities of continuous 

online model updates. 
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Stream Training with Stream Prediction 

Stream training with stream prediction represents the 

most advanced approach to real-time machine 

learning, enabling continuous model updates 

alongside immediate inference. Rather than relying 

on static, periodically retrained models, online 

learning algorithms process new data as soon as it 

arrives, incrementally refining model parameters and 

drastically reducing the time between data ingestion 

and model improvement. [8]. The fully streaming 

approach requires sophisticated infrastructure and 

careful system design to maintain reliability and 

performance across various use cases. 

 
The fundamental architecture of a streaming ML 

system relies on key capabilities provided by stream 

processing frameworks. Apache Flink's stateful stream 

processing enables organizations to maintain and 

update model states efficiently while processing 

incoming data streams. The framework's ability to 

handle event time processing and late-arriving data 

makes it particularly suitable for real-world 

applications where data arrival patterns may be 

unpredictable [8]. These capabilities become crucial 

when implementing online learning algorithms that 

must update model parameters incrementally. 

Modern stream processing architectures must address 

several architectural challenges to maintain reliable 

performance in production environments. Integrating 

machine learning models into streaming pipelines 

introduces complexities around model serving, 

versioning, and monitoring [9]. Organizations must 

carefully consider managing the model lifecycle, 

handling model updates, and maintaining consistent 

performance across distributed serving instances 

while dealing with the inherent challenges of stream 

processing. 

Performance monitoring in streaming ML systems 

requires specialized approaches that differ 

significantly from traditional batch processing 

scenarios. The architecture must support real-time 

tracking of both system health and model 

performance metrics [9]. This includes tracking data 

distribution shifts, detecting anomalies in model 

predictions, and maintaining visibility into the stream 

processing pipeline's performance characteristics, 

such as throughput and latency. 

The implementation of streaming ML systems must 

address several technical challenges inherent to real-

time processing. Apache Flink's checkpointing 

mechanism helps ensure fault tolerance and state 

consistency, which becomes crucial when 

maintaining model state across distributed 

environments [8]. The system must also implement 

appropriate windowing strategies to handle time-

based aggregations and feature computations while 

efficiently processing out-of-order events. 
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Organizations implementing streaming ML 

architectures face challenges related to data quality, 

model stability, and system scalability [9]. The 

architecture must incorporate robust validation 

procedures that can operate in real-time, implement 

appropriate error-handling mechanisms, and maintain 

system reliability under varying load conditions. This 

includes developing strategies for handling edge cases, 

managing resource utilization, and ensuring 

consistent model performance across different 

deployment scenarios. 

An example use-case: A fraud detection system ingests 

millions of transactions per day. Each incoming 

transaction event is processed using a streaming 

framework such as Apache Flink to extract features 

(e.g., transaction amount and user velocity). 

Incrementally updates a classifier with online 

learning methods. With every checkpoint, the model 

state is saved, ensuring fault tolerance. Because the 

model updates continuously, it quickly adapts to 

emerging fraud patterns instead of waiting for an 

overnight batch job. As a result, latency is minimized, 

and the system remains resilient to constantly shifting 

transaction behaviors. By combining real-time feature 

engineering with incremental model updates, stream 

training with stream prediction allows organizations 

to act on evolving data patterns immediately, keeping 

the model relevant and responsive in high-velocity 

domains where every second of delay can be costly. 

 

 
 

Continual Learning Systems 

 
Continual learning represents an adaptive approach to 

machine learning where systems can learn from a 

continuous stream of data while maintaining 

performance on previously learned tasks. This 

methodology addresses the fundamental challenge of 

learning in dynamic environments where data 

distributions evolve. Modern continual learning 

systems must balance the stability-plasticity dilemma, 

ensuring that models can acquire new knowledge 

without compromising their existing capabilities [10]. 

The core strength of continual learning systems lies in 

their ability to adapt to concept drift and distribution 

shifts while maintaining model performance. These 

systems employ sophisticated mechanisms to prevent 

catastrophic forgetting, which occurs when new 

learning interferes with previously acquired 

knowledge. Research has shown that careful 

management of model parameters and selective 

synaptic plasticity can help maintain performance 

across different tasks while allowing for continued 

learning [10]. This balance is crucial for maintaining 

system reliability in production environments. 

Implementing effective continual learning systems 

requires careful consideration of practical deployment 

aspects in production environments. Organizations 

must develop robust monitoring systems that track 

model performance and learning dynamics over time 
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[11]. This includes implementing sophisticated 

metrics for detecting concept drift, measuring 

catastrophic forgetting, and evaluating the system's 

ability to maintain performance across different tasks 

and periods. 

Production deployment of continual learning systems 

demands specialized architectures that can handle the 

complexities of incremental learning. These systems 

must incorporate mechanisms for efficient parameter 

updates and knowledge retention, often utilizing 

techniques such as experience replay or elastic weight 

consolidation [11]. The architecture must also include 

robust evaluation frameworks that assess immediate 

performance and long-term learning stability. 

Monitoring becomes particularly critical in continual 

learning contexts, as systems must track not only 

current performance but also the evolution of model 

behavior over time. Organizations must implement 

comprehensive monitoring solutions that detect 

various types of drift, including feature, concept, and 

label drift [10]. This monitoring infrastructure must 

be capable of triggering appropriate interventions 

when significant deviations are detected. 

The success of continual learning systems in 

production environments depends heavily on 

adequately implementing fallback mechanisms and 

safety protocols. Organizations must establish clear 

procedures for handling performance degradation and 

implementing model rollbacks when necessary [11]. 

This includes maintaining versions of well-

performing models that can be deployed quickly if the 

continually learning system encounters issues. 

 

Best Practices for Implementation 

Implementing machine learning systems in 

production environments requires a systematic 

approach to MLOps practices and design patterns. 

Organizations must establish robust processes for 

developing, deploying, and maintaining ML systems 

while ensuring reliability, scalability, and operational 

efficiency [12]. 

 

7.1. Architecture Selection 

The foundation of successful ML system 

implementation begins with MLOps practices that 

emphasize automation and reproducibility. 

Organizations must establish transparent processes for 

continuous integration and continuous delivery 

(CI/CD) of machine learning models, ensuring that 

model deployment and updates can be handled 

efficiently and reliably [12]. This includes 

implementing automated testing and validation 

procedures to verify model performance before 

deployment. 

Data pipeline architecture plays a crucial role in 

successful ML implementations. Teams must 

implement robust data versioning and feature 

engineering practices that ensure reproducibility and 

traceability of model training [13]. This includes 

establishing transparent processes for data validation, 

feature computation, and model validation that can 

scale with increasing data volumes and complexity. 

Organizations must also consider the operational 

aspects of their ML architecture. This includes 

implementing proper monitoring and logging systems 

that track model performance, data quality, and 

system health [12]. The architecture should support 

automated retraining pipelines that update models 

when performance degrades, or new data patterns 

emerge. 

7.2. System Design Considerations 

Effective system design in ML requires careful 

attention to technical and operational requirements. 

Modern ML systems must implement comprehensive 

monitoring capabilities that can track model accuracy, 

feature distributions, prediction latency, and system 

resource utilization [13]. This includes setting up 

proper logging frameworks to help diagnose issues 

and track system behavior over time. 

Scalability considerations must be embedded in the 

system design from the start. This includes 

implementing proper model-serving infrastructure 

that can handle varying loads and implementing 

feature stores that can serve features efficiently for 
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training and inference [12]. The design should also 

include proper testing frameworks to validate model 

performance across different scenarios and data 

distributions. 

Version control in ML systems extends beyond 

traditional code versioning, including model artifacts, 

data schemas, and hyperparameters. Organizations 

must implement MLOps practices that ensure 

reproducibility of model training and deployment 

[13]. This includes maintaining proper documentation 

of model architectures, feature definitions, and 

deployment configurations. 

7.3. Operational Excellence 

Operational excellence in ML systems requires robust 

monitoring, maintenance, and continuous 

improvement processes. Organizations must 

implement comprehensive monitoring systems to 

detect model drift, data quality, and system 

performance problems [12]. This includes setting up 

appropriate alerting mechanisms to notify teams 

when interventions are needed. 

Performance metrics and service level objectives 

(SLOs) must be clearly defined and monitored. This 

includes tracking technical metrics like prediction 

latency and business metrics that measure the actual 

impact of ML models [13]. Organizations should 

implement proper capacity planning procedures that 

ensure sufficient resources are available for training 

and serving workloads. 

Security and governance considerations must be 

integrated throughout the ML lifecycle. This includes 

implementing proper access controls, audit logging, 

and model governance practices [12]. Organizations 

should establish transparent processes for model 

validation, deployment approval, and ongoing 

monitoring of model performance and behavior. 

 

Conclusion 

The evolution from batch to streaming machine 

learning pipelines represents a transformative shift in 

how organizations approach real-time decision-

making and model deployment. While traditional 

batch processing continues to serve essential use cases, 

the emergence of hybrid and streaming architectures 

has expanded the possibilities for real-time inference 

and continuous learning. Success in implementing 

these systems requires careful consideration of various 

factors, including data characteristics, operational 

requirements, and organizational capabilities. As the 

field continues to mature, we observe increasing 

convergence between different architectural 

approaches, with organizations adopting hybrid 

solutions that combine the benefits of both batch and 

streaming paradigms. The key to successful 

implementation lies in understanding the inherent 

trade-offs between different approaches and selecting 

architectures that align with specific use cases while 

maintaining an appropriate balance between 

complexity and maintainability. 
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