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 Lung Cancer continues to be a major global health hazard, contributing to 

around 1.8 million fatalities per year. This number is anticipated to increase, 

with projections forecasting 17 million deaths by 2030. Major risk factors include 

asbestos, tobacco smoke, air pollution, radon exposure, previous radiation 

treatment, and the family history of the disease. The recent Covid-19 pandemic 

has worsened the situation for lung cancer patients, making them more 

vulnerable to complications. In this study, two Convolutional Neural Network 

(CNN) models, SqueezeNet and Resnet-50, were evaluated for lung nodule 

classification in Computed Tomography (CT) images. These CNN models differ 

in architecture, depth, and feature extraction abilities. Key performance 

indicators such as classification sensitivity, specificity, accuracy, and 

computational efficiency are the main focus of the comparison. The Luna 16 

database, which comprise CT images and labeled lung nodules, was used for 

model training and validation. The results showed that SqueezeNet outperformed 

ResNet-50, achieving a Train-accuracy of 88.07% and a Test-accuracy of 89.62%, 

while ResNet-50 achieved a Train-accuracy of 83.81% and a Test-accuracy of 

86.18%. Both models demonstrated strong performance in evaluation metrics 

like F1-score, Precision and Recall, highlighting the effectiveness of CNN-based 

models in enhancing lung nodule detection. 
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Introduction 

Lung Cancer remains the most serious and widespread 

diseases worldwide, consistently being the leading 

cause of death for many years, with approximately 1.9 

million fatalities annually. It is projected that death 

rates from lung cancer will continue to increase, with 

an estimated 17 million deaths globally by 2030 [1]. 

Several factors contribute to the development of lung 

cancer, including exposure to asbestos, radon, and 

tobacco smoke, as well as tobacco product use. Other 
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significant risk factors include high levels of air 

pollution, prior radiation therapy, and a family 

history of the disease. The recent Covid-19 pandemic 

has further complicated the situation for individuals 

with lung cancer, who are more susceptible to 

consequences[4]. The virus can damage the lungs, 

increasing the risk of developing other diseases like 

lung cancer [5]. Common manifestation of lung 

cancer include shortness of breath, chest pain, 

respiratory infections weight loss, and persistent 

cough. The 5 year survival rate for lung cancer 

patients is currently about 23.7%, largely due to late-

stage diagnoses, which often delay treatment. Early 

detection, however, can substantially improve 

survival rates, potentially increasing them to 50-70%. 

Lung cancer is generally categorized into two primary 

catergory: Small-Cell-Lung Cancer (SCLC) and Non-

Small-Cell-Lung Cancer (NSCLC). Of all incidences of 

lung cancer, 80–85% are NSCLC, with the remaining 

15-20% being SCLC[2]. The detection of lung cancer 

is typically done using X-rays or CT scans. However, 

these methods can be time-consuming and difficult 

for radiologists, often leading to potential inaccuracies. 

Research has shown that false positive rates in lung 

cancer screenings evaluated by human experts can be 

as high as 54%[19]. This process requires substantial 

focus, expertise, and experience. 

To identify lung cancer, a number of diagnostic 

methods are employed, such as CT, MRI (Magnetic-

Resonance Imaging), PET (Positron-Emission-

Tomography), and chest X-rays. Because of their 

greater tumor identification accuracy and lower noise 

levels, chest CT scans are preferred among these [6]. 

For the early detection and treatment of lung cancer, 

CT scans offer vital clinical imaging data [8]. Our 

study uses CT scan pictures to predict lung cancer 

because of their efficacy. 

Advanced technologies like machine learning, 

artificial intelligence, and image processing are 

significant for enabling the early identification and 

diagnosis of lung cancer. By providing technical 

solutions for medical data analysis, these technologies 

improve lung cancer diagnosis and detection [9]. Even 

though eight different studies have been done on 

image processing techniques for early cancer 

detection, their ability to diagnose early-stage cancer 

is still restricted and has to be improved. Neural 

networks are useful tools for early lung cancer 

diagnosis because they have the potential to identify 

cancer cells in healthy tissues [7]. The success of these 

methods in comparable domains is leveraged in this 

study, which focuses on a deep learning-based 

categorization strategy [27]. Dataset collecting, data 

pre-processing, lung segmentation, feature extraction, 

and lung classification are commonly included in the 

methodology[13]. 

CNN, a kind of deep learning algorithm, has shown 

great success in medical image analysis, especially 

when it comes to tasks like classifying lung nodules. 

CNN models are designed to learn hierarchical 

features from raw picture data on their own, which 

renders them especially effective for the analysis of 

intricate medical images, including CT scans. Below is 

an overview of some key CNN models and their 

important characteristics. 

LeNet-5[25], developed by Yann LeCun and his team 

in 1998 stands as the foundational architectures of 

CNNs. Initially designed for recognizing handwritten 

digits with the MNIST dataset, this model comprises 

seven layers, including two subsampling (or pooling) 

layers, two convolutional layers, two fully connected 

layers, and an output layer. As one of the earliest 

successful implementations of CNNs, LeNet-5 

significantly contributed to the progress of computer 

vision by showcasing the efficacy of Deep Learning 

methods in image recognition tasks. 

AlexNet [3] is a pioneering convolutional neural 

network that marked a significant advancement in the 

field of computer vision. Its architecture comprises 

eight layers, which include three fully connected 

layers and five convolutional layers. This net is made 

a substantial impact in the ImageNet-Large-Scale-

Visual Recognition Challenge (ILSVRC), establishing 

a benchmark for images classification. Notable 
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characteristics of AlexNet are the implementation of 

ReLU activation functions to incorporate non-

linearity, the inclusion of dropout layers to mitigate 

overfitting, and the application of data augmentation 

methods to improve this model's robustness and 

generalization capabilities. 

In 2014 VGGNet [22], developed by Karen Simonyan 

and Andrew Zisserman, is renowned for its deep 

architecture, with either 16 or 19 layers, depending 

on whether the VGG16 or VGG19 variant is used. Its 

distinctive characteristic is the use of miniature 3x3 

convolution filters throughout the network, 

contributing to its simplicity and uniform structure. 

In the same year, Google introduced GoogLeNet 

(Inception), an architecture with 22 layers based on 

the Inception module. This design enabled the use of 

multiple filter sizes at the same level, reducing the 

number of parameters and introducing auxiliary 

classifiers. 

In 2015, Kaiming He and his research team unveiled 

ResNet (Residual Networks) [21], a model that 

utilized residual connections to facilitate the training 

of extremely deep networks, effectively mitigating the 

vanishing gradient issue. This architecture is available 

in several configurations, including 18, 34, 50, 101, 

and 152 layers. Two years later, in 2017, Gao Huang 

and his colleagues introduced DenseNet [12], which 

further advanced the field by implementing dense 

connections between layers. This design promotes to 

enhances overall performance and feature reuse. 

That same year, Google Inc. released MobileNet [17], 

followed by the MobileNetV2 and MobileNetV3 

versions. These models are designed for mobile and 

embedded vision applications, focusing on efficiency 

and low computational cost through depthwise 

separable convolutions. Additionally, François Chollet 

developed Xception in 2017[15], an extension of the 

Inception Architecture that substitute standard 

convolutions with depthwise separable convolutions, 

resulting in a 71-layer network aimed at improving 

both performance and efficiency. 

This study compares two different CNN models, 

ResNet-50 and SqueezeNet, to classify lung nodules in 

CT scans. To find the best architecture for this 

application, we will assess these models using a range 

of performance characteristics, including sensitivity, 

specificity, accuracy, and computing efficiency. 

 

RELATED WORKS 

A novel approach, the "Denoising First" Two-Path 

CNN (DFD-Net) [23], tackles the challenges 

associated with lung cancer detection in CT scans. 

This model seamlessly integrates denoising and 

detection into a single end-to-end framework. 

Initially, noise is eliminated during preprocessing 

using DR-Net, a residual learning-based denoising 

model. The enhanced image is then processed by a 

two-path CNN, which is specifically designed to 

detect lung cancer by simultaneously capturing local 

and global features through paths with varied 

receptive field sizes, enabling the modeling of 

complex dependencies. 

Additionally a study that compared DL models for 

pneumonia diagnosis highlighted the Inception-

ResNet model's superiority [16]. Among the models 

evaluated, Inception-ResNet-V2 achieved the highest 

classification accuracy, surpassing ResNet152V2, 

MobileNet-V3 (both large and small), EfficientNetV2 

(both large and small), InceptionV3, and NASNet-

Mobile by margins of 2.6%, 6.5%, 7.1%, 13%, 16.1%, 

3.9%, and 1.6%, respectively, demonstrating its 

effectiveness in providing accurate results. 

The EOSA-CNN hybrid model [11] showed 

exceptional performance following training. When 

assessed on the publicly accessible IQOTH and NCCD 

lung cancer dataset from the Iraq-Oncology Teaching 

Hospital and the National Center for Cancer Diseases, 

the EOSA metaheuristic algorithm achieved a 

classification accuracy of 93.21%. In comparison to 

other methods, including GA-CNN, LCBO-CNN, 

MVO-CNN, SBO-CNN, WOA-CNN, and traditional 

CNN, EOSA-CNN excelled in specificity, recording 

values of 0.7941 for normal cases, 0.9795 for benign 
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cases, and 0.9328 for malignant cases. These findings 

validate the effectiveness of the EOSA-CNN hybrid 

algorithm in lung cancer classification. 

EfficientNet-B3, a convolutional neural network 

(CNN) that leverages transfer learning and weakly-

supervised learning methodologies, was utilized to 

predict carcinoma in Whole Slide Images (WSIs) [6]. 

Trained on 3,554 WSIs, this model excelled at 

distinguishing lung carcinoma from non-neoplastic 

conditions, achieving impressive ROC AUC scores 

across four independent test sets (0.975, 0.974, 0.988, 

and 0.981). The model's successful validation marks a 

significant step toward developing software to assist 

pathologists in routine workflows, enhancing 

diagnostic accuracy while reducing workloads. 

A neural network-based methodology for identifying 

abnormal lung tissue growth, focusing on high 

detection accuracy, is presented in [18]. The approach 

leverages textural characteristics to distinguish 

between normal and malignant tissues. Enhanced 

detection is achieved through CNN and GoogleNet 

algorithms, with both the region proposal and 

classifier networks utilizing VGG-16 as their 

foundation. This model demonstrated exceptional 

detection and classification precision of 98%, 

supported by confusion matrix analysis and 

classification accuracy metrics. 

A 3D multipath VGG-like network was employed to 

analyze 3D cubes from the LIDC-IDRI and Lung Bowl 

2017 datasets [26]. This approach integrated U-Net 

predictions with the VGG-like network to detect and 

classify lung nodules and assess malignancy levels. 

The combined architecture achieved a 95.6% 

accuracy and a log loss of 0.387732, showcasing its 

capability in lung nodule classification and 

malignancy evaluation.The YOLOv5 deep learning 

framework [10] significantly enhances diagnostic 

precision and efficiency, with implications for 

improved patient outcomes. This model not only 

delivers high classification accuracy (97.77%) but also 

accelerates the process, making it ideal for clinical 

settings. Its training and test loss curves illustrate 

consistent improvements in accuracy over time, 

reinforcing its reliability. 

Finally, a model detailed in [14] demonstrated 

exceptional performance in lung nodule detection and 

staging (STG-1 to STG-4) using the ResNet-18 

convolutional neural network classifier. It achieved a 

detection accuracy of 98.2%, sensitivity of 96.4%, and 

a notably low false positive rate of 1.8 per scan. These 

results suggest the model's potential for clinical 

integration, aiding early cancer detection and 

minimizing false positives. 

This table below provides an overview of various 

studies that have utilized transfer learning for lung 

nodule classification. A groundbreaking method, the 

"Denoising First" Two-Path Convolutional Neural 

Network (DFD-Net) [2], addresses the challenges of 

lung cancer detection in CT scans. This model 

seamlessly integrates denoising and detection into a 

single end-to-end framework. Initially, noise is 

eliminated during preprocessing using DR-Net, a 

residual learning-based denoising model. The 

enhanced image is then processed by a two-path 

convolutional neural network, which is specifically 

designed to detect lung cancer by simultaneously 

capturing local and global features through paths with 

varied receptive field sizes, enabling the modeling of 

complex dependencies. 

This below table provides an overview of various 

studies that have utilized transfer learning for lung 

nodule classification. 
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TABLE I.  RELATIVE WORKS ON LUNG NODULE CLASSIFICATION USING  TRANSFER LEARNING 

                Methodology Datasets Re          Results Author                                              

MobileNet, VGG16, 

VGG19, DenseNet-201 and 

ResNet-101 

1190 CT scan Accuracy 56% 

Precision 43% 

Recall   42% 

Specificity 42% 

Aashka Mohite et al 

[11] 

CNN, DTC, KNN, SVM, NB, 

MLP, GBM, GBRT, ABC 

QOTH/NCCD 

1190 images 

Accuracy, precision, recall, and 

f1-score are on average 99.71%. 

Alihan Suiçmez et al 

[24] 

VGG16, 

ResNet50, 

CNN 

ACDC LUNGH 

 

Overall Accuracy 

97.9 % 

93 % 

Šarić M et al. [22] 

 

VGG16, 

ResNet50, 

CNN 

 

Luna 16 
 

97.1% accuracy, 

95.9% sensitivity, 

98.1% specificity 

-Pragya Chaturvedi 

et al [1] 

AlexNet and ResNet 1,532 images 

Shengjing 

of China Medical 

University 

95.6%. ResNet Chengquan Guo et 

al [3] 

3D-ResNet, 3D-VNet LIDC-IDRI LUNA16 

dataset 

Accuracy, sensitivity, and 

specificity of 99.2%, 98.8%, and 

99.6% 

Lavina Jean Crasta et 

al [2] 

ResNet50, VGG 16, 

EfficientNet-B5 

LC15000 dataset 

 

91%ResNet50, VGG 16 94%, 

EfficientNet-B5 97% 

Suvarna G 

Kanakaraddia et al 

[5] 

 

ResNet-50 

EfficientNet-B0, 

 

Multi-centric dataset 

from Kaggle 

 

Maximum epoch 

0.9962 and 9.9978 

 

Kajal Kansal et al [7] 

 

 

DATASETS 

This research employs  LUNA16 (Lung Nodule 

Analysis 2016)[20] dataset for the diagnosis of lung 

nodules. LUNA16 acts as a standard for evaluating the 

effectiveness of various lung nodule detection 

algorithms. The data utilized in this study has 

undergone preprocessing and is partially derived from 

the LUNA16 competition dataset. It consists of a 

diverse set of CT scan images featuring lung nodules 

of varying sizes and stages. These images are 

annotated with detailed information regarding the 

location, size, and type of each nodule, with 

annotations provided by radiologists to serve as the 

ground truth for evaluating the detection algorithms. 

 

COMPARATIVE ANALYSIS WITH TRANSFER 

LEARNING OF LUNG NODULE 

A Convolutional Neural Network (CNN) built on 

SqueezeNet is ideal for situations with limited 

computational resources. SqueezeNet is a lightweight 

CNN architecture designed to deliver high 

performance with fewer parameters and reduced 

computational demands. It utilizes fire modules, 

which include a squeeze layer and an expand layer, 
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significantly reducing the number of parameters 

compared to conventional CNN models. Due to its 

computational efficiency and smaller model size, 

SqueezeNet is an excellent choice for training on 

resource-constrained platforms, such as Kaggle. 

While fine-tuning a pre-trained model can offer 

advantages, in this case, the model will be trained 

from scratch. This approach starts with randomly 

initialized model weights, followed by training on the 

dataset. Training from scratch requires a sufficiently 

large dataset to ensure the model can learn 

meaningful features. Additionally, it involves defining 

the model architecture, loss functions, and 

optimization methods. The dataset is to be split into 

training and validation subsets, typically following an 

80-20 split. This division is requisite for assessing the 

model’s performance on previously unseen data and 

for minimizing the likelihood of overfitting. 

Normalizing the image data is essential for neural 

network training, as it accelerates convergence and 

enhances model performance. Pixel values are scaled 

to a standard range, making it easier for the model to 

learn. In this case, the original pixel values range from 

-3000 to 2000, which could cause issues like slower 

convergence and numerical instability during training. 

ResNet supports the training of very deep networks 

by mitigating the vanishing gradient issue. Its design 

features residual blocks that facilitate the smoother 

passage of gradients throughout the network. Even 

with limited resources, using a simplified version of 

ResNet is advantageous as it offers a strong framework 

for feature learning without demanding excessive 

computational power. It strikes a good balance 

between depth and efficiency. The model will be 

trained from scratch by initializing weights randomly 

and learning from the dataset. While fine-tuning a 

pretrained model is typically beneficial, it is not 

utilized here due to resource constraints. Figure 1 

presents a comparative analysis of deep learning 

architectures, specifically ResNet50 and CNN, in the 

context of classifying lung nodules using imaging data 

related to lung cancer. The purpose could be to 

evaluate which model provides better accuracy, 

computational efficiency, or interpretability. 

 

RESULTS AND DISCUSSION 

In this study, the Keras and TensorFlow frameworks 

were employed to implement models using multi-

centric data from the Luna16 database. Two well-

known CNN architectures, SqueezeNet and ResNet-

50, were evaluated for their effectiveness in lung 

nodule detection. The Outcome indicated that the 

SqueezeNet model achieved a Train Accuracy of 

0.8807 and a Test Accuracy of 0.8962, while the 

ResNet-50 model achieved a Train Accuracy of 0.8681 

and a Test Accuracy of 0.9867. Although both models 

performed well, ResNet-50 surpassed SqueezeNet in 

terms of both training and testing accuracy results. 

 

TABLE II  METRICS EVALUATION OF  

RESNET50 AND SQUEEZENET 

Evaluation 

metrics 

Resnet50 Squeeze net 

Precision 0.98 0.90 

Recall 0.97 0.88 

Fi score 0.98 0.89 

Accuracy 0.98 0.88 

Overall, the outcomes across both datasets were 

noteworthy, reflecting strong performance across 

multiple evaluation metrics, such as precision, recall, 

and F1-score, as outlined in Table II, highlighting the 

effectiveness of both models. 
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Figure  1.  Comparative study of deep learning architectures (ResNet50 vs. CNN) for lung nodule classification 

 

Figures 2 and 3 illustrate the accuracy and loss curves 

of the SqueezeNet and ResNet-50 models for lung 

nodule classification using both training and 

validation datasets. The validation loss for SqueezeNet 

decreases but exhibits significant fluctuations, 

indicating a potential degree of overfitting. In contrast, 

the ResNet-50 model appears to be well-optimized, 

with both training and validation losses steadily 

decreasing and accuracy increasing consistently. 
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Figure 2. Loss and Accuracy of Squeezenet using Training and validation data for lung nodule classification 

 

Figure 3. Loss and Accuracy of Resnet50 using Training and validation data for lung nodule classification 

 

Figures 4 and 5 present the ROC curves for the 

SqueezeNet and ResNet-50 models. The ROC curve 

for ResNet-50 is positioned near the Upper-Left 

corner, with an AUC. of 1.00, indicating perfect 

classification performance for lung nodules, with no 

false positives or false negatives. In comparison, 

SqueezeNet achieves an AUC of 0.93, demonstrating 

very strong classification performance. Figures 6 and 7 

display the confusion matrices for SqueezeNet and 

ResNet-50, providing a detailed breakdown of each 

model's performance in lung nodule classification. 

 

 
Figure 4. Squeezenet ROC curve for lung nodule 

classification 
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Figure 5. Resnet50 ROC curve for lung nodule 

classification 

 

 
Figure 6. Matrix Confusion of Squeezenet for lung 

nodule classification 

 

 
Figure 7: Matrix Confusion of Resnet50 for lung 

nodule classification 

 

CONCLUSION 

This study reviews and presents the application of 

Transfer Learning techniques for lung nodule 

classification. The literature on this topic highlights 

significant advancements and persistent challenges 

within the field. Recent studies highlight the growing 

significance of sophisticated ML and DL methods, 

especially CNN, in improving the precision and 

dependability of lung nodule detection and 

classification. 

This study demonstrates the effectiveness of CNN 

architectures, specifically SqueezeNet and ResNet-50, 

for lung nodule detection using multi-centric data 

from the Luna16 database. Results indicate that 

ResNet-50 consistently outperforms SqueezeNet in 

both training and testing accuracies across various 

datasets. With higher training accuracy and superior 

testing performance, ResNet-50 proves to be a more 

effective model for this task. While SqueezeNet 

delivers commendable results, particularly in testing 

accuracy, ResNet-50's overall superior performance 

makes it the preferred choice for this application. 

Both models exhibit robust performance across 

evaluation metrics such as F1-score, precision, and 

Recall, demonstrating their effectiveness in lung 

nodule detection. This study highlights ResNet-50's 

potential as a tool for improving diagnostic accuracy 

in lung cancer detection while affirming the solid 

performance of both models in clinical contexts. 

The current body of literature on lung nodule 

classification underscores the importance of ongoing 

innovation in algorithm design and data management. 

It also emphasizes the need for collaborative efforts to 

validate and standardize these models across diverse 

populations and imaging protocols. Future research 

should aim to address these challenges, enhance 

model generalizability, and explore emerging 

technologies to further advance lung nodule 

classification. 
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