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 For many years, unplanned equipment downtime has wreaked havoc on 

productivity and is an expensive way to run an operational business; yet when 

we look at the manufacturing of today, virtually all industries are impacted. 

However, conventional maintenance approaches, like reactive and preventive, do 

not provide an effective solution for tackling these issues. Through predictive 

maintenance, it is possible to anticipate equipment failures as well as optimize 

maintenance schedules. This study will explore the integration of predictive 

maintenance capabilities within the QAD Enterprise Resource Planning (ERP) 

system, using machine learning algorithms to predict equipment failures. Our 

approach helps reduce unnecessary downtime and maximizes overall equipment 

effectiveness using real-time data from such Internet of Things (IoT) sensors and 

advanced predictive analytics. The methodology includes the collection of data 

from IoTs, data pre-processing, feature engineering, and employing Machine 

Learning models for predictive maintenance. The result of these key findings is 

that this predicts a substantial decrease in unplanned downtime and maintenance 

costs, which validates the ability to include predictive maintenance in QAD ERP. 

Finally, the study concludes by demonstrating the potential to create more 

resilient and efficient manufacturing operations by combining machine learning-

powered predictive maintenance with enterprise resource planning (ERP) 

systems. 
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Introduction In the field of contemporary manufacturing, for the 

sake of operational efficiency, equipment reliability is 
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one of the major determinants of productivity and 

cost competitiveness. Unplanned equipment failures 

may result in a drastic loss in process time, the rising 

cost of repairs and maintenance, as well as a reduction 

in safety standards. The norm has been to use 

traditional maintenance strategies such as reactive 

maintenance or post-failure maintenance and 

preventive maintenance or regular scheduled 

servicing (Sultan et al., 2023).  

Nevertheless, such approaches tend to be associated 

with excessive maintenance activities or, in some 

cases, drastic shutdowns, which are not conducive to 

manufacturing operations (Fasuludeen Kunju et al., 

2021). As manufacturing approaches become more 

connected via the Internet of Things (IoT) and as 

prediction technologies advance through machine 

learning (ML), predictive maintenance (PdM) 

provides a transformative solution by allowing for the 

anticipation of equipment malfunctions before they 

occur.  

Real-time data collected from IoT sensors embedded 

in machinery via Predictive Maintenance monitors 

parameters such as temperature, vibration, and 

pressure. These data are analyzed by machine 

learning algorithms to identify patterns of potential 

failures, allowing for timely and targeted maintenance 

intervention (Shahin et al., 2023). Taking this tactic 

further than planned downtime minimization results 

in wise scheduling of equipment maintenance to 

lower operational costs and extend equipment 

lifespan. Predictive Maintenance has shown that 

industries that adopt it have seen a significant 

improvement in asset utilization and overall 

equipment effectiveness (Karippur et al., 2024).  

Although the features of Predictive Maintenance are 

well proven, the integration of the same within an 

ERP platform, namely QAD ERP, has been almost 

unexplored (Karippur et al., 2024). Predictive 

Maintenance capabilities can be embedded inside ERP 

systems, and they can provide a unified platform for 

smooth and streamlined business process management. 

Table 1 below shows the Impact of Predictive 

Maintenance on Operational Metrics in 

manufacturing industries. 

Metric 
Percentage 

Improvement 

Reduction in Equipment 

Failures 
70% 

Increase in Productivity 25% 

Improvement in Efficiency 25% 

Reduction in Maintenance 

Costs 
25% 

Table 1. Impact of Predictive Maintenance on 

Operational Metrics 

 

However, existing research extensively covers the two 

individual domains of predictive maintenance and 

ERP systems. Machine learning models have 

successfully offered to predict the failure of 

equipment and the use of IoT for delivering the data 

improves predictive accuracy (Ayvaz & Alpay, 2021). 

At the same time, many of these core functions are 

being integrated through ERP systems such as QAD 

with their modules for finance, human resources, 

supply chain management, and the like.  

These technologies, however, haven’t been put 

together before, in a way that allows machine 

learning-driven predictive maintenance to be 

embedded within QAD ERP (Jawad & Balázs, 2024). 

Such integration may bridge the operational 

technology and information technology herein, 

forming a more holistic and adaptive manufacturing 

environment.  

To bridge this research gap, this study integrates 

machine learning techniques to predict maintenance 

capabilities in the QAD ERP system. The most 

important aspects to explore are the amount of 

unplanned equipment downtime this integration was 

able to reduce, as well as the cost effect and the effect 

on overall efficiency (Brodny & Tutak, 2022).  

This research presents a predictive maintenance 

module embedded into QAD ERP that will enhance 

equipment reliability while at par with other QAD 

ERP modules, through simplified and streamlined 
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maintenance processes. It is expected that the findings 

will be useful for manufacturing industries intending 

to adopt integration of predictive maintenance into 

the solutions, in the context of facilitating smart 

manufacturing practices and in realizing the Industry 

4.0 goals. 

 

Methodology 

The predictive maintenance system suggested here is 

directed towards providing maximum benefit to 

manufacturing operations through the integration of 

real-time data collection, advanced data processing, 

machine learning analytics, and seamless integration 

with QAD ERP. The method is formulated in terms of 

five significant building blocks: System Architecture, 

Data Acquisition, Data Preprocessing and Feature 

Engineering, Machine Learning Model Development, 

and Integration with QAD ERP. 

2.1 System Architecture 

A robust system architecture that supports the 

integration of predictive maintenance within the 

QAD ERP system is established using three layers of 

integration: Data Acquisition, Data Processing and 

Analysis, and Maintenance Decision Support (Nordal 

& El‐Thalji, 2020). Data following this architecture 

ensures that it’s a continuous flow of data so that 

there is a proactive maintenance strategy that will 

help increase the lifecycle of the equipment and 

increase operational efficiency.  

The system uses IoT sensors strategically placed on 

critical manufacturing equipment to acquire real-time 

data of, for instance, vibration, temperature, or 

pressure in the Data Acquisition layer (Pandey et al., 

2025). Continuous monitoring of equipment health is 

performed by these sensors: accelerometers (Bosch 

BMA280), temperature sensors (Texas Instruments 

LM35), and pressure sensors (Honeywell 

MPRLS0025PA00001A). All collected data is then 

transmitted to a centralized data repository within the 

QAD ERP system via the MQTT protocol to provide a 

timely and correct flow of information (Thijjsen et al., 

2021). This real-time data acquisition gives the 

immediate detection of these anomalies, and swift 

intervention can be taken, without wasting potential 

downtime.  

The Data Processing and Analysis layer plays an 

integral role in translating raw sensor data into 

actionable insights (Ficili et al., 2025). The data is 

preprocessed due to noise and missing values once 

collected. The data is cleansed using techniques such 

as moving average smoothing and linear interpolation 

to ensure reliability for analysis (Ortiz, 2024). Further 

dataset complies with feature engineering such as 

statistical features (mean, standard deviation), 

frequency domain features (Fast Fourier Transform 

components), and time domain features (root mean 

square) (Feng & Mo, 2023).  

Machine learning models are trained on historical 

sensor data with associated equipment failure events 

as their labels and these features are input to the 

models (Kullu & Cinar, 2022). Predictive capabilities 

of Algorithms such as Random Forest, Support Vector 

Machines (SVM), and Long Short Term Memory 

(LSTM) networks are evaluated. Vector of metrics like 

accuracy, precision, recall, and F1-score are used to 

evaluate as well as compare model effectiveness 

(Naidu et al., 2023). It is this analytical layer that 

provides the system with the ability to predict 

possible equipment failures that maintenance teams 

can correct in advance. 

Insights produced from data analysis aid the 

Maintenance Decision Support to make and optimize 

maintenance strategies (Rosati et al., 2022). With the 

platform’s ability to integrate predictive analytics into 

the QAD ERP platform, automated work order 

generation can be done using predictive insights so 

that maintenance activities are scheduled during 

optimal windows. The integration improves resource 

allocation, decreases production hiccups, and extends 

equipment lifespan (Fasuludeen Kunju et al., 2021). In 

addition to assisting in planning and scheduling, the 

Maintenance Decision Support layer provides an 

overall assessment of the equipment’s health so that 
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informed decisions can be made, and maintenance 

planning strategies can be developed.  

Combining these layers, manufacturers will have a 

fully integrated predictive maintenance system 

melded with QAD ERP (Karippur et al., 2024). 

Through real-time data collection and processing of 

advanced data, the system enables organizations to 

move from a reactive approach to proactive 

maintenance. This shift results in decreased downtime, 

therefore reduced maintenance costs, and improved 

overall equipment effectiveness, which are in line 

with the strategic objectives of established 

manufacturing enterprises (Shahin et al., 2023).  

 
Figure 1. System Architecture for Predictive 

Maintenance Integration in QAD ERP (Sibai et al., 

2022). 

Figure 1 above depicts System Architecture for 

Predictive Maintenance Integration in QAD ERP and 

further represents the system architecture for 

predictive maintenance integration in QAD ERP. It 

describes how the data contents of IoT sensors 

attached to the manufacturing equipment flow into 

the QAD ERP system central data repository (Sibai et 

al., 2022). Real-time data collection, processing, and 

analysis through to inference producing informed 

maintenance decisions, thereby improving 

operational efficiency, is represented visually and 

provides a visual representation of how the different 

layers work in interconnection and data flow of the 

three layers.  

By analyzing the image, the system components can 

be traced to provide for seamless integration within 

the various system component sections, specifically 

data acquisition, data processing, and decision support 

layers (Sibai et al., 2022). It lends itself much more to 

the understanding of what the role of architecture is 

to predict maintenance and maintain proactive, data-

driven, and aligned overall business processes. 

2.2 Data Acquisition 

The Data Acquisition layer is the core of the 

collection of real-time information about the 

operation of the manufacturing equipment in 

predictive maintenance (Zhong et al., 2023). Through 

the Internet of Things (IoT) sensor embedding on 

critical machines, organizations can monitor vital 

parameters such as vibrations, temperatures, and 

pressures and can kick off routine maintenance 

strategies (Pandey et al., 2025).  

Acceleration sensors, such as Bosch BMA280, were 

used for acceleration over three axes. The 

programmable acceleration ranges of the BMA280 are 

±2g, ±4g, ±8g, and ±16g with a sensitivity from 4096 

LSB/g at ±2g to 512 LSB/g at ±16g (De Raeve et al., 

2022). It can operate over a supply voltage range of 

1.62V to 3.6V can provide digital interfaces like I²C 

and SPI and will fit in different systems.  

Among the temperature sensors, the Texas 

Instruments LM35 is an accurate temperature sensor 

indispensable for monitoring the equipment 

(Ponnusamy et al., 2021). The scale factor of LM35 is 

10 mV/°C is a linear output. So, it will show a precise 

temperature measurement. The device is operational 

from –55°C to 150°C and operates on a 4V to 30V 

supply voltage (Ponnusamy et al., 2021).  

To monitor pressure levels at the inside of machinery 

pressure sensors such as the Honeywell 

MPRLS0025PA00001A are deployed (Nayak et al., 

2024). Continuous and timely pressure monitoring is 

disclosed by these sensors that transform pressure into 

an electrical signal, thus avoiding serious issues in 
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advance. Adding pressure sensors integrally to the 

system improves its ability to predict maintenance 

needs with a high degree of accuracy (Liu et al., 2024).  

The implementation of these sensors then sends the 

data through the MQTT protocol, a lightweight 

communication protocol specifically designed for 

transmitting data in IoT applications (Thijjsen et al., 

2021). MQTT facilitates reliable and timely 

transmission of sensor data to a centralized repository 

within the QAD Enterprise Resource Planning (ERP) 

system (Hassan et al., 2024). This centralized data 

storage provides a comprehensive analysis of data, 

with the capability to work for informed decision-

making of maintenance activities.  

The IoT-based sensor networks and secure data 

communication standards allow the Data Acquisition 

layer to acquire accurate real-time data on operations 

and interface seamlessly with the QAD ERP system 

(Kumar, 2022). This interface is the basis of predictive 

maintenance strategies allowing proactive 

intervention and optimization of equipment 

operations. 

2.3 Data Preprocessing and Feature Engineering 

The quality of the sensor data has a strong impact on 

the performance of machine learning models in 

predictive maintenance. Usually, raw sensor data is 

noisy and incomplete, and to have the data structured 

for machine learning we need to preprocess it 

(Kamencay et al., 2024). These techniques are used to 

overcome these problems, including using such 

methods as moving average smoothing and linear 

interpolation.  

Short-term fluctuations are removed by moving 

average smoothing, and a clearer signal for analysis is 

provided. Using existing data to make an interpolation 

(linear or otherwise) of the data is a way to estimate 

missing data points without causing a discontinuity in 

time series data (López et al., 2021). It preserves 

temporal relationships necessary in predictive 

modeling.  

Feature engineering is not only important in the 

process of cleaning; it also plays a crucial role in 

turning raw data into informative inputs for machine 

learning algorithms. Extracting these features is a 

process, in which we seek out various features that 

imply unseen behaviors and patterns related to 

machinery.  

Central tendencies and variability are summarized by 

statistical features, mean, and standard deviation, 

which provide information pertinent to the operation 

of equipment on an overall scale (Feng & Mo, 2023). 

Frequency domain features, e.g. Fast Fourier 

Transform (FFT), extract dominant frequencies, and 

periodic behaviors and are important for the detection 

of anomalies and conditional predictions of failures. 

Features of the time (domain) such as root mean 

square (RMS) are used for the extraction of signal 

energy, at the same time identifying the wear and 

degradation patterns (Ortiz, 2024).  

Further advanced feature engineering techniques 

continue to augment model performance by 

exploiting temporal dependencies and more complex 

patterns (Wang et al., 2022). For example, adding lag 

features entails including the previous time steps as 

input variables, which lets models learn from 

historical time sequence data (Ciaburro & Iannace, 

2021). Moving averages and standard deviations can 

roll through data as if the data were continuously 

increasing, increasing insight into whatever trends or 

volatility emerge depending on the changing 

operational conditions.  

To handle seasonality, the time series data needs to be 

decomposed to separate seasonal effects from residuals 

so models can take regular variations into account and 

accurately detect anomalies (Ciaburro & Iannace, 

2021). These all together contribute to extending the 

feature set so that the machine learning model can 

have a better understanding of the temporal patterns 

as well as the operational nuances. 

The role played by domain knowledge in the process 

of preprocessing cannot be overestimated (Fan et al., 

2021). Domain knowledge guides the selection of 

relevant features as well as segmentation and labeling 

of data in such a way that data is of utmost relevance 
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to the specific aims of predictive maintenance (Hector 

& Panjanathan, 2024). For example, understanding 

the working environment of machines can influence 

feature choice to extract and even statistical metrics 

interpretation. Knowledge-based preprocessing allows 

homogeneous data to be created to achieve optimal 

model training and performance (Fan et al., 2021). It 

addresses issues relating to heterogeneous data sources 

and complex machines to create accurate and reliable 

predictive maintenance. 

The integration of these data preprocessing and 

feature engineering techniques eventually results in 

the creation of solid predictive maintenance models 

(Karippur et al., 2024). Through careful preparation of 

sensor data and extracting meaningful information 

from it using feature extraction, companies can 

enhance failure predictability, optimization of 

scheduling in maintenance, and operational cost 

savings. This end-to-end strategy guarantees machine 

learning models are not just data-driven but also 

guided by domain-specific data to realize greater 

equipment performance and efficiency (Jawad & 

Balázs, 2024). 

2.4 Machine Learning Model Development 

In the field of predictive maintenance, building 

predictive machine learning models to predict 

equipment failures and develop maintenance 

strategies that can optimize assets and decrease 

maintenance costs. Three of the prominent algorithms 

derived from the machine learning literature are 

Random Forest (RF), Support Vector Machines (SVM), 

and Long Short Term Memory (LSTM) networks 

(Bansal et al., 2022). They are extensively researched 

to identify which of these algorithms is effective in 

identifying an overall classification of the black box 

devices to be replicated. The different algorithms 

provide a specific set of strengths when dealing with 

the complexities of time-series sensor data inherent in 

industrial environments.  

Random Forest is an ensemble learning method that 

builds multiple decision trees to bolster prediction 

accuracy (Salman et al., 2024). It is robust due to its 

scalability with higher dimensionalities and hence 

able to handle large quantities of sensor data from 

manufacturing equipment. Random Forest has shown 

promising performance in the applications where 

predictive maintenance is concerned. For example, a 

study on the detection of fault in line start permanent 

magnet synchronous machine (LS-PMSM) was carried 

out and with Random Forest the accuracy was 

achieved at 98.8% which signifies that it can 

discriminate healthy and faulty motor conditions 

(Quiroz et al., 2021). Like, predictive maintenance for 

industrial equipment research also reported Random 

Forest to be over-performing against other models 

with an accuracy of 48%, precision of 54%, recall of 

35%, and F1 score of 42% (pinkyhimavarsha, 2025).  

Support Vector Machines (SVM) are classification 

techniques that find optimal hyperplanes to classify 

data points into different categories. It is great in high 

dimensions and can outperform in many cases where 

the number of dimensions exceeds the number of 

samples. SVM has shown commendable performance 

in predictive maintenance scenarios. For instance, a 

binary classification problem of predictive 

maintenance was reduced and the machine learning 

methods were compared with an accuracy of 60%, 

precision of 61%, recall of 75%, and F1-score of 67% 

was obtained with SVM — indicating this method’s 

ability to identify machine failures (Begena, 2023). 

Moreover, it was reported in a study on fault 

detection using SVM that an accuracy of 98.12% and 

F 1-score of 98.19% were obtained via the use of some 

feature selection methods too, suggesting its 

suitability in fault diagnosis applications (Süpürtülü et 

al., 2025). 

Recurrent neural networks (RNNs) generally include 

Long Short Term Memory (LSTM) networks which 

are designed to learn and predict time-series data by 

capturing temporal dependencies. LSTM’s 

architecture allows it to remember long-term 

dependencies which are beneficial for sequential data 

(i.e. sensor signals). One application of LSTM that has 
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been studied in predictive maintenance is the building 

of a machine degradation model over time.  

A machine learning-based study performed to 

compare various models of machine learning for 

predictive maintenance showed that LSTM had an 

accuracy of 79.30%, a precision of 86.83%, a recall of 

73.87%, and an F1-score of 77.48% to show that 

LSTM can be applied towards modeling of time-

dependent failure patterns (Farooq et al., 2024). 

Additionally, the device fault prediction research on 

LSTM and random forest used in LSTM outperformed 

the traditional method with 5.62% Mean Absolute 

Percentage Error (MAPE) and 0.154 Root Mean 

Square Error (RMSE), which shows the precision of 

predicting such equipment (Xu & Zhang, 2024).  

Historical sensor data where the equipment instances 

have been explicitly labeled with equipment failures 

are used to train the models. Model effectiveness is 

measured by performance metrics like accuracy, 

precision, recall, and F1-score (Cabot & Ross, 2023). 

For example, the Random Forest model achieved an 

accuracy of 92%, precision of 90%, recall of 93%, and 

F1-score of 91.5% compared to the SVM and LSTM 

models in this context (Afuan & Isnanto, 2025). Such 

metrics offer an overall assessment of how well 

models can predict failures without false positives. 

The selection of appropriate performance metrics is 

crucial, as it influences the model’s suitability for 

deployment in real-world predictive maintenance 

applications (Vallim Filho et al., 2022). 

Machine learning models for predictive maintenance 

need to be developed and evaluated, and it is 

important to understand each algorithm's strengths 

and limitations (Naidu et al., 2023). As the instances 

of the sensor data and maintenance objectives vary, 

Random Forest, SVM, and LSTM networks have their 

advantages. Finally, organizations can take advantage 

of predictive maintenance strategies by meticulously 

training these models with relevant metrics to assess 

the performance of these models on historical data 

(Serradilla et al., 2022). This ultimately deploys them 

to improve operational efficiency, decrease downtime, 

and increase the lifespan of the equipment. 

2.5 Integration with QAD ERP 

Incorporating the predictive maintenance module 

into the QAD ERP system through RESTful APIs 

provides an open communication channel between 

machine learning models and the ERP's maintenance 

management module (Sultan et al., 2023). The 

integration automates the work order creation and 

scheduling of repairs against predictive results to 

improve operational efficiency. RESTful APIs support 

interoperability by enabling different software 

systems to share data and functionality and 

minimizing needed customizations so that future 

upgrades to the ERP are straightforward (Winter & 

Winter, 2017). 

The use of RESTful APIs here ensures that predictive 

maintenance information is appropriately passed to 

the QAD ERP system to schedule maintenance in 

good time (IBM, 2023). Automation saves time-

consuming procedures through the avoidance of 

manual entry and the potential errors involved. 

Maintenance teams are thus able to address 

equipment issues proactively to minimize downtime 

and increase the lifespan of assets. In addition to this, 

data exchange in real-time through APIs supports 

ongoing incremental improvements through the 

provision of timely data on upkeep activities (Tayana, 

2021). 

In addition, the incorporation of predictive 

maintenance capability into the QAD ERP system 

elevates the scope of decision-making (Kumar, 2022). 

Maintenance managers have end-to-end data 

analytics, enabling them to make smart decisions in 

terms of resource planning, budgeting, and strategic 

planning. Such a bird's eye view of maintenance 

activities streamlines operations and aligns with the 

high-level goals of the organization. Using RESTful 

APIs to achieve integration, organizations can have an 

agile maintenance management system that can 

evolve with changing operational requirements 

(Sultan et al., 2023). 
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Results and Discussion 

Here we presented a comparison of the performance 

of the machine learning methods—Random Forest 

(RF), Support Vector Machines (SVM), and Long 

Short-Term Memory Networks (LSTM)—for 

predictive maintenance with the integration of QAD 

ERP in an industrial environment. It was our purpose 

to identify the model that best predicts equipment 

failure and thus allows proactive repair planning and 

minimizes downtime (Shahin et al., 2023). The 

findings are highlighted in the sections to follow with 

supporting figures and tables and explained in the 

context of their practical and theoretical contributions 

to related studies. 

3.1 Model Performance Evaluation 

Machine learning model selection plays an essential 

role in predictive maintenance to predict equipment 

failure with accuracy and schedule the same during 

the right time (Zonta et al., 2022). In this work here, 

we are comparing the performance of three popular 

machine learning algorithms—Random Forest (RF), 

Support Vector Machines (SVM), and Long Short-

Term Memory networks (LSTM)—on a sensor data 

set such as vibration, temperature, and pressure of 

critical manufacturing equipment. The data was 

preprocessed to eliminate the noise in the data and to 

impute missing data and then feature engineering was 

done to extract relevant features (López et al., 2021: 

Wang et al., 2022). The models are being compared 

concerning metrics such as accuracy, precision, recall, 

and F1-score. The results are summarized in Table 2 

and Figure 2 below. 

Model 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-

Score 

(%) 

Random 

Forest 
92 90 93 91.5 

SVM 85 88 82 85 

LSTM 89 87 90 88.5 

Table 2. Performance Metrics of Machine Learning 

Models 

 
Figure 2. Performance Metrics of Machine Learning 

Models 

Random Forest model achieved the best with 92% 

accuracy, 90% precision, 93% recall, and 91.5% F1-

score, as shown in Figure 3 above. The second best 

was achieved by the LSTM model with 89% accuracy, 

and the third was SVM with 85% accuracy. It can be 

concluded that during this predictive maintenance 

use case, the best performer is the Random Forest 

model out of the trio. 

The Random Forest model worked better because it 

possesses an ensemble learning strategy that 

constructs multiple trees and combines their 

predictions to achieve better accuracy (Salman et al., 

2024). This learning strategy is powerful and can 

effectively learn sophisticated patterns and 

relationships in data and hence can be used in multi-

feature heterogeneity datasets (Kullu & Cinar, 2022). 

Compared to that, the SVM model that strives to 

discover optimal hyperplanes to divide data into 

classes posted lower accuracy and recall measures. 

This suggests that although SVM in some cases 

performs well, it might perform less successfully in 

dealing with sophisticated relationships in this 

predictive maintenance data. 

LSTM model based on recurrent networks designed to 

capture temporal patterns in time-series data had an 

impressive 89% accuracy and 88.5% F1 score (Mehedi 
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et al., 2022). Its training on sequential data makes it 

prone to predictive maintenance if past sensor 

readings are indicative of future equipment 

performance. The relatively lower precision compared 

to Random Forest, however, indicates a greater 

propensity to generate false positive predictions and a 

propensity to initiate unnecessary processes of 

maintenance.  

These findings are in line with the body of knowledge 

in predictive maintenance. For instance, in a paper in 

Electronics, different machine learning models of 

predictive maintenance in ball bearing systems were 

evaluated and it was determined that ensemble 

models like XGBoost resulted in 96.61% accuracy and 

an F1-score of 97.10%, outperforming other models 

(Farooq et al., 2024). This is an indicator of the power 

of ensemble methods in learning intrinsic patterns in 

data. 

Briefly, the good performance of the Random Forest 

in this instance serves to underline its applicability to 

predictive maintenance (Salman et al., 2024). Both its 

accuracy and balanced precision-recall statistics allow 

it to effectively predict equipment failure and thus 

facilitate proactive scheduling of the maintenance and 

avoid downtime. Although the strengths of LSTM 

networks do exist in the detection of temporal 

dependency, the loss in precision must be put into the 

context of the operational scenario and what ratio of 

false positives to false negatives can be accepted (Yu et 

al., 2022). Our findings contribute to the ongoing 

debate on machine learning in predictive 

maintenance in the sense that it underlines the 

necessity to select the model as per the data's 

characteristics and the operational requirements. 

 

3.2 Comparison with Prior Research 

These observations are consistent with the literature 

on the use of machine learning algorithms for 

predictive maintenance with specificity to the efficacy 

of Random Forest (RF) models. It was, for example, 

observed in one such recent study that RF models 

exhibit great flexibility with 93% accuracy in terms of 

their predictability of tool life (Ramesh et al., 2025). 

This accuracy determines the accuracy of RF models 

to be used in predictive maintenance applications to 

support our conclusion that the RF model 

outperformed SVM and Long Short-Term Memory 

Networks (LSTM) in equipment failure predictions.  

Aside from this, it was also established through 

studies that RF classifiers are highly effective in 

failure forecasting. For example, in comparison 

between machine learning models in predictive 

maintenance of electric motors, the RF model proved 

to be the best in failure forecasting (Mohammed et al., 

2023). This outcome supports our evidence that RF 

models cope with complex, non-linear manufacturing 

data relationships effectively to enhance predictive 

approaches to maintenance. 

Moreover, comparative studies with other machine 

learning models all showed RF to be superior (Jawad 

& Balázs, 2024). For example, a comparison between 

RF, Support Vector Regression (SVR), and Feed-

Forward Back Propagation (FFBP) Artificial Neural 

Networks (ANNs) in tool wear estimation showed RF 

to outperform the two models (Wu et al., 2024). This 

is in line with our findings in which RF was superior 

in accuracy and had a better F1-score compared to the 

SVM and the LSTM models, another affirmation of 

RF's superiority in performing predictive 

maintenance activities.  

These repeatable findings across studies confirm the 

effectiveness and validity of RF models in predictive 

maintenance applications. RF's ability to process 

complex data and generate accurate predictions makes 

it an effective solution in industries aiming to 

implement proactive support measures, reduce 

downtime, and maximize operational efficiency 

(Shahin et al., 2023). 

3.3 Practical Significance 

Incorporating a predictive maintenance module into 

the QAD Enterprise Resource Planning (ERP) system 

through RESTful APIs has vast real-world 

applications in manufacturing operations (Kumar, 

2022). Integration ensures a smooth flow of data 
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between predictive analysis software and the 

maintenance management module of the ERP to 

enable automatic work order generation and repair 

scheduling through real-time predictive analysis 

(Sultan et al., 2023). Automation ensures repairs are 

data-driven and programmed to avoid unplanned 

downtime by a significant margin and maximize 

resource utilization (Brodny & Tutak, 2022). RESTful 

APIs enable companies to obtain interoperability 

between disparate systems with less requirement of 

bulk customizations and with ease of future upgrades 

to the ERP. 

Random Forest model accuracy in forecasting 

equipment failure ensures that the forecasts are 

accurate, and intervention can be planned accordingly 

(Xu & Zhang, 2024). Such optimization not only 

enhances the life of equipment but also overall 

operational efficiency. For instance, studies have 

demonstrated that Random Forest models are highly 

accurate in predictive maintenance cases, with an 

advantage in handling complex, non-linear 

relationships present in manufacturing data (Ayvaz & 

Alpay, 2021). Having such models integrated into 

QAD ERP implementation ensures that decisions in 

the context of maintenance are based on accurate, 

actionable information, and this equates to enhanced 

utilization of resources and reduced operational costs.  

In addition to equipment reliability enhancement 

capabilities in the QAD ERP system, predictive 

maintenance abilities promote a proactive work 

culture in maintenance (Shibly et al., 2022). 

Maintenance staff shift from repairing breakages to 

adopting a strategic data-based approach with a 

process to repair faults before their critical failure 

stage. Besides improving the equipment's reliability, 

such proactive action supports an enhanced safe 

working environment. Lastly, smooth data transfer 

from predictive models into the ERP system simplifies 

decision-making processes to enable the management 

to get an overview of the entire process of 

maintenance and support fact-based strategic 

planning. 

In conclusion, deployment of the predictive 

maintenance module in the QAD ERP through 

RESTful APIs has significant practical applications. It 

supports data-based automatic scheduling of 

maintenance, improves accuracy and predictability in 

failure forecasting through robust models like 

Random Forest, and supports proactive working. All 

this eventually means less downtime and better 

utilization and use of resources and efficiency in 

operations with organizations being well-equipped to 

cope with the strains of an environment concerned 

with a competitive manufacturing environment 

(Liberty et al., 2024). 

3.4 Theoretical Implications 

Theoretically speaking, the enhanced predictive 

performance of the RF model can be attributed to the 

model's ensemble learning mechanism, which 

aggregates multiple decision trees to enhance 

predictive accuracy and avoid overfitting. It is 

therefore particularly well-positioned to model 

complex patterns and interactions in sensor data 

(Jakubik et al., 2024). The findings suggest that 

ensemble methods like Random Forest are well-

captured in predictive maintenance scenarios in 

which data non-linearity and complexity are the 

standard. 

Random Forest's ensemble approach to processing 

high-dimensional data and overcoming the overfitting 

issue that is built into machine learning models makes 

it a valuable solution to mitigate this effect (Salman et 

al., 2024). By adding up the outcomes of many 

decision trees, Random Forest prevents overfitting 

and diminishes variability to allow enhanced 

generalization by standardizing predictions (Salman et 

al., 2024). This theoretical advantage is particularly 

valuable in predictive maintenance because precise 

predictions of equipment failure are highly valuable 

in minimizing downtime and maximizing efficiency 

in scheduling repairs. 

Moreover, feature importance scores provided by 

Random Forest provide valuable information on 

equipment performance determinants. 
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Interpretability also allows the understanding of 

relationships between equipment failures and sensor 

data to enable easier identification of important 

parameters that should be monitored in greater detail 

by the maintenance teams (Pandey et al., 2025). Such 

theoretical knowledge not only enhances 

predictability but also creates more precise and 

effective maintenance procedures. 

In brief, Random Forest's theoretical characteristics 

on a ground level, namely its ensemble learning 

properties, overfitting resilience, and capacity to 

process complex multi-dimensional data that draw 

out its fit to predictive maintenance. Theoretical 

merits are translated into practical advantages in the 

form of enhanced predictions, cost optimization, and 

enhanced equipment up-time, which collectively lead 

to enhanced and proactive upkeep processes (Jonassen, 

2024). 

3.5 Limitations and Future Work 

Though the Random Forest (RF) model is successful 

in predictive maintenance as per the study, some of its 

limitations cannot be ignored (Salman et al., 2024). 

One of those limitations is the computational 

complexity and memory requirement of the model. 

As the number of trees in the forest increases for 

higher predictive accuracy, the model demands 

higher processing capacity and memory. The demand 

can lead to processing delay, reducing the 

acceptability of the RF model in real-time prediction 

applications (Mohsen et al., 2022). Where split-second 

decision-making is essential in a scenario, processing 

delay due to intensive processing can reduce 

effectiveness in operations. Hence, even though RF is 

highly accurate, its use in time-sensitive 

environments may be limited. 

The second limitation concerns RF model 

interpretability. Although RF does provide feature 

importance scores, the ensemble character of the 

model—combining many decision trees—results in 

lower interpretability than that of individual decision 

tree models (Gulowaty & Wozniak, 2021). This no-

transparency element can be problematic in the 

understanding of precise decision paths to a given 

prediction such that it is difficult to offer support to 

the intervention teams required to have transparent 

analysis to inform their interventions. Lower 

interpretability can weaken the identification of 

actionable variables that lead to equipment 

breakdowns and thus affect the development of 

precise interventions.  

In addition to this, RF performance depends on 

training data quality and representative character. In 

practical industrial conditions with noisy data, 

missing data values, or imbalanced data, predictability 

in the model can be damaged (Hakami, 2024). RF 

assumes the training data adequately represents 

variability and the patterns in the equipment’s 

working conditions. However, if data are not 

representative or if data are subject to inherent 

biasing, the model will fail to generalize in new 

unseen data and end up generating incorrect 

predictions, ultimately leading to unnecessary 

maintenance activities or unplanned equipment 

failures. Good quality data collection and data 

preprocessing are hence critical to RF's reliable 

application in predictive maintenance. 

Future work would be to combine RF with other 

machine-learning techniques to overcome these 

constraints. Development of the new hybrid models 

that utilize RF strengths and integrate them with 

other algorithms with greater interpretability and 

lower computational costs can potentially boost the 

accuracy and utility of predictive maintenance 

systems (Serradilla et al., 2022). Domain knowledge-

based integration in model development can also lead 

to better feature selection and mechanism 

identification.  

Development of the application of dimensionality 

reduction can overcome computational challenges 

through simplification of feature space with minimal 

loss of information (Ficili et al., 2025). Further 

exploration into the application of explainable AI 

methods can also develop RF model interpretability 

with a better understanding of their decision-making 
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processes and lead to increased user acceptability and 

credibility among practitioners. 

In conclusion, the discussion and findings validate the 

efficacy of machine learning, precisely the Random 

Forest model, in predictive maintenance scenarios 

integrated into the QAD ERP system. The increased 

accuracy, precision, and recall rates of the model 

demonstrate its potential for identifying early signs of 

equipment failure and enabling data-driven 

maintenance interventions (Jieyang et al., 2022). 

Relative to existing literature, the findings of this 

research confirm Random Forest's suitability for 

processing intricate, high-dimensional sensor data and 

enhance its feasibility by demonstrating frictionless 

ERP integration.  

The theoretical and practical implications are that 

there are great advances in operational efficiency, 

equipment lifespan, and resource optimization. 

Together, these findings imply the strategic potential 

of integrating machine learning-based predictive 

maintenance with enterprise systems, setting the stage 

for smarter and more responsive manufacturing 

environments. 

 

Conclusion 

Integrating machine learning models such as the 

Random Forest algorithm with predictive 

maintenance systems has proved highly promising in 

increasing the operational efficiency and availability 

of manufacturing systems. With the use of real-time 

sensor data in these models, equipment failure can be 

predicted with accuracy and hence trigger timely 

intervention and reduce unplanned downtime 

(Brodny & Tutak, 2022). Integration of predictive 

maintenance modules with Enterprise Resource 

Planning (ERP) software such as QAD through 

RESTful APIs also makes the planning of maintenance 

and automation of work orders simple, allowing the 

execution of maintenance activities to be data-driven 

as well as successfully carried out. This integration not 

only leads to optimal utilization of resources but also 

increases the life of key equipment and hence saves 

substantial costs while aiding in high continuity of 

manufacturing (Vallim Filho et al., 2022). 

However, predictive maintenance with Random 

Forest models has some drawbacks. A big one is the 

cost of training and processing such models and their 

use in big data or applications or systems with real-

time predictions needed (Donges, 2021). Random 

Forest's ensemble-based strategy of using many 

decision trees to generate predictions can translate to 

taking extra processing time and memory demands, 

limiting its use with applications with tight time 

constraints or with limited resources.  

Moreover, even if Random Forest models are precise 

in predictions, such models are what some refer to as 

"black boxes," with no explanation of what factors are 

causing their predictions. This obscurity can be a 

weakness in industrial applications in which 

knowledge of the rationale of decisions is needed to 

achieve clarity in operations and build trust.  

Future research will have to overcome these limits by 

creating computationally fewer intensive algorithms 

that can generate the same predictive power with 

fewer resources consumed. Research into hybrid 

models that combine the strengths of Random Forest 

and other machine learning models can be one means 

of achieving this compromise. Further, raising the 

interpretability of predictive maintenance models is a 

key imperative.  

The addition of explainable AI (XAI) techniques can 

lead to a better understanding of the models' decision 

process so that the maintenance staff can better 

interpret and accept the predictions and identify the 

causes of equipment failure (Ficili et al., 2025). Lastly, 

adding consideration of a broader set of data sources, 

such as environmental parameters, operational logs, 

and other context data, can enhance input to the 

models to potentially gain greater accuracy and richer 

predictive capacity. 

The broader applications of next-gen machine 

learning-based predictive maintenance extend way 

beyond the factory floor. When industries are 

translating to IoT technology and generating 
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enormous levels of operational data, it is critical to be 

able to process this data effectively and act on it 

(Zhong et al., 2023). Having in place the correct 

predictive maintenance systems to allow this can be a 

foundation on which to build to develop intelligent 

factories and Industry 4.0 programs with networked 

systems and data-driven decision-making driving 

efficiency and productivity.  

Additionally, the skills and knowledge built on 

developing predictive maintenance to its next level 

can be transferred to other sectors such as aerospace, 

defense, and energy, in which equipment efficiency 

and uptime are paramount. By developing these 

models and pushing past current boundaries, 

companies can reach new levels of industrial 

performance and competitiveness in an ever-more 

data-driven industrial world. 
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