

Copyright © 2025 The Author(s) : This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/)

International Journal of Scientific Research in Computer Science, Engineering

and Information Technology

ISSN : 2456-3307

Available Online at : www.ijsrcseit.com

doi : https://doi.org/10.32628/CSEIT25113379

965

Exploring the Trade-Off between Language Simplicity and

Execution Efficiency: A Study Using Crython and LLVM
Soham Malakar, Sreekanya Pal, Nazlee Rahman, Asoke Nath*

*Post Graduate and Research Department of Computer Science, St. Xavier’s College (Autonomous), Kolkata,

West Bengal, India

A R T I C L E I N F O

A B S T R A C T

Article History:

Accepted : 10 June 2025

Published: 15 June 2025

 Contemporary programming languages often pose a challenge due to either

complex syntax or performance limitations, especially in dynamically typed

environments. The language proposed in this paper, Crython, aims to mitigate

these challenges by offering a beginner-friendly, Python-like syntax combined

with performance that approaches that of C. It is built with a custom lexer,

employs a Pratt parser for expression handling, and uses a Recursive Descent

parser for statements. Code generation is powered by LLVM, leveraging its

robust toolchain to simplify backend implementation and deliver high execution

speed. While the syntax is intentionally similar to Python to facilitate ease of

adoption, it also addresses certain ambiguities and inconsistencies found in

Python’s design. The paper includes performance benchmarks across multiple

languages to demonstrate the efficiency and competitiveness of the proposed

language.

Keywords: Programming Language Design, Syntax Simplicity, LLVM Code

Generation, Pratt Parser, Performance Benchmarking, Python-like Syntax.

Publication Issue

Volume 11, Issue 3

May-June-2025

Page Number

965-973

Introduction

Modern programming languages are becoming

increasingly complex, making them harder to learn,

especially for beginners. While languages like Python

are accessible and easy to learn, they often lag in

performance. In contrast, high-performance languages

such as C or C++ typically involve a steeper learning

curve. In this paper, the authors have combined the

best of both worlds thereby making the proposed

language fast and easy to learn. As the language’s

syntax is reminiscent of Python's syntax, users are not

required to relearn a whole new language from scratch.

Although the syntax is similar, the backend is

completely different from Python as Crython is a

statically-typed programming language making its

performance comparable to C. It acts as a bridge

between Python’s simplicity and C’s performance.

In the paper by C. Ye, Z. Shen, Y. Wu, and P. Loskot

[10], the authors highlight that Python has a clear

advantage in terms of its learning curve, largely due to

Volume 11, Issue 3, May-June-2025 | http://ijsrcseit.com

Soham Malakar et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., May-June-2025, 11 (3) : 965-973

966

its concise and beginner-friendly syntax. This makes it

easier for newcomers to quickly get started with

programming in Python. Given the widespread

familiarity with Python’s syntax, the authors have

designed Crython to closely follow Python’s structure.

The goal is to make the language more accessible and

comfortable for users by leveraging the simplicity and

popularity of Python’s syntax.

Although Python’s syntax is beginner-friendly, it has

many flaws. Strict indentation rule is one of them.

Beginners often overlook proper whitespace usage in

their code. This often causes significant issues while

debugging. Copying a Python code might mess up the

entire indentation. Sometimes tabs and spaces are both

present in the codebase which can make debugging

extremely difficult. While indentation enhances

readability, it restricts the programmer’s freedom in

organizing code.

As Python does not have a keyword to declare

variables it suffers from local and global scoping. Put

simply, initializing a variable outside a function

definition, creates a global variable. Accessing a

variable within a function is generally acceptable,

provided that the variable is not modified.

For example,

x = 10

def fun():

 print(x)

The above program works correctly because the

variable x is not modified. The x simply acts as the

global variable.

x = 10

def fun():

 x = 5

This program also works. In the fun function x is a local

variable. This does not change the global x.

x = 10

def fun():

 x += 5

The code above produces an error because x is treated

as a local variable, but it has not been defined locally.

Although Python provides two keywords global and

nonlocal that solve this issue. [6]. However, this

approach can feel cumbersome in practice. In such

cases, C-style declarations often provide a clearer and

more suitable alternative.

int x = 10;

void fun() {

 x += 5;

}

C-style declaration makes the variable declaration

quite simple. In Crython, the var keyword is used to

declare variables. This solves the problem of Python’s

global and local scope reducing the unintentional bugs.

Finally, indentation sometimes causes issues with the

multiline statements.

For example,

x = "Hello " +

 "World"

These kinds of statements sometimes throw syntax

errors because of less or more indentation. To address

this issue, Crython is designed to completely ignore all

whitespace. During lexical analysis, whitespace

characters are excluded from the token stream,

effectively eliminating potential errors caused by

incorrect spacing.

But this solution comes with one compromise.

Statements must be terminated with a semicolon;

otherwise, the compiler cannot determine where the

current statement ends. This is a fundamental problem

of all programming languages that ignore whitespaces.

To address this limitation, an automatic semicolon

insertion technique, referred to as the Sanitizer, is

implemented. It smartly inserts semicolons after each

statement. This technique is similar to Go’s

implementation [5] of auto semicolon insertion.

However, this approach is stricter than Go’s

implementation. This is discussed in detail in the later

section of the paper.

Since the language utilizes the LLVM backend, the

compiler can benefit from extensive optimization

opportunities [7]. All the techniques are discussed in

detail in the later section.

Volume 11, Issue 3, May-June-2025 | http://ijsrcseit.com

Soham Malakar et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., May-June-2025, 11 (3) : 965-973

967

The implementation of custom lexer and parser is also

discussed in that section.

METHODS AND MATERIAL

A. Literature Review

A compiler is traditionally divided into two main

components: the frontend and the backend. The

frontend handles lexical, syntactic, and semantic

analysis, while the backend is responsible for code

generation and optimization [1].

In this work, the authors have developed a custom

frontend from scratch to maintain full control over the

compilation process. Although a variety of lexer and

parser generators are available such as Lex and YACC,

as well as more modern tools like ANTLR; a low-level,

handcrafted approach was chosen to maintain greater

control over the compilation process. This decision was

guided by the intention to maintain focus on the core

objectives of the project, rather than diverting

attention to the evaluation and integration of

additional tools.

The current implementation uses a custom lexer, along

with a combination of a Pratt parser [3] and a Recursive

Descent parser. The Pratt parser is employed for

parsing expressions, as it offers excellent scalability and

makes it easy to introduce new operators. A Recursive

Descent parser is used for statement parsing, as it is

straightforward to implement and sufficient for the

intended purpose.

On the backend, the authors chose to target native

code using the LLVM infrastructure rather than

implementing a bytecode-based virtual machine. This

decision reflects the authors’ aim to ensure optimal

performance. Native compilation involves translating

source code directly into machine code, which runs

directly on hardware and thus offers superior

execution speed.

In contrast, Python follows a bytecode execution

model. Python source code is first compiled into

bytecode, which is then executed by the Python virtual

machine. This indirection introduces overhead and

results in slower performance compared to native

execution. Bytecode approaches can be categorized

into stack-based and register-based instruction sets.

Python utilizes a stack-based model, which employs

zero-address instructions, whereas register-based

models use three-address instructions [9]. While stack-

based virtual machines are simpler to implement, they

tend to be less efficient than their register-based

counterparts.

Despite the relative simplicity of stack-based bytecode,

implementing a virtual machine from scratch remains

a complex and effort-intensive task [8]. Conversely,

while native code generation may seem more

challenging, LLVM significantly lowers the barrier by

providing a clean and well-documented interface. In

this project, llvmlite [4] is leveraged to interact with

LLVM. This allows the compiler to generate LLVM

intermediate representation (IR), which is then

compiled by LLVM into optimized native code across

different architectures. This approach not only

simplifies backend development but also results in

high-performance executables.

Currently, for the string implementation, heap

allocation is performed making the language un-

optimized for the string-related operations. A C library

function GC_malloc is called for allocating memory

from heap. This is a built-in garbage collector also

known as Boehm’s Garbage Collector [12]. It

guarantees that no memory leaks while doing string-

related operations. The GC_malloc function is called

using the Foreign Function Interface of Python

through ctypes library [11].

As this is the first iteration of the compiler, the feature

set has been intentionally kept minimal. As a result,

support for arrays, file I/O, and a standard library is not

included in the current implementation. Due to time

constraints, these features could not be implemented,

but the authors plan to introduce them in future

iterations of the language.

B. Compiler Pipeline Overview

The compiler is structured as a modular pipeline, with

each stage performing a distinct task and passing its

Volume 11, Issue 3, May-June-2025 | http://ijsrcseit.com

Soham Malakar et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., May-June-2025, 11 (3) : 965-973

968

output to the next stage. The primary components of

the pipeline are:

1) Lexer

2) Sanitizer

3) Parser

4) Code Generator

Each module operates independently to ensure

maintainability and extensibility.

Fig. 1: Compilation Pipeline Diagram

C. Lexical Analysis

The compilation process begins with lexical analysis,

where the raw source code is read as a string and passed

to the Lexer. The Lexer processes the input character

by character to generate a stream of tokens, each

representing meaningful units such as keywords,

identifiers, literals, and operators.

For example, given the statement:

name = "John";

The Lexer encounters n and identifies it as the start of

an identifier or keyword. It then constructs the

complete token name and classifies it as an identifier.

Every token also records its position in the source code,

which is essential for precise error reporting. This

tokenization continues until the entire input is

processed into a structured token list.

D. Sanitization

Whitespace tokens, such as newlines, are not retained

in the implementation. As a result, statements must be

explicitly separated typically with semicolons. While

retaining newline characters could serve as implicit

separators, this would complicate parsing multiline

expressions.

Example:

x = "Hello " +

 "World"

Requiring manual semicolon placement would be

error-prone and tedious, particularly for users familiar

with Python’s clean syntax. To address this, the

authors have implemented automatic semicolon

insertion, a strategy inspired by Go’s compiler design

[5].

The Sanitizer analyzes both the last token of the

current line and the first token of the next line to

determine where semicolons should be inserted unlike

Go, which considers only the former. This enables

support for complex constructs such as method

chaining and split-line expressions.

Example:

x = 42

 * 69

y = 5

This pattern is correctly parsed by the Crython’s

compiler, whereas Go’s strategy would fail.

E. Syntax Analysis

The Parser takes the sanitized token stream and

constructs an Abstract Syntax Tree (AST). The

approach combines two parsing strategies:

1) Pratt Parsing for expressions, which enables

efficient handling of operator precedence [2] and

associativity.

2) Recursive Descent Parsing for statements, which

simplifies rule-based parsing of control structures

and declarations.

Table 1: Simplified Operator Precedence Table

Operator Precedence

Lowest 0

Sum 1

Product 2

Exponent 3

Volume 11, Issue 3, May-June-2025 | http://ijsrcseit.com

Soham Malakar et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., May-June-2025, 11 (3) : 965-973

969

This table allows the Pratt parser to:

1) Determine when to stop parsing a subexpression.

2) Decide which operator binds more tightly.

3) Respect associativity (left-to-right or right-to-

left).

F. Simplified Pratt Parsing Logic

PARSE_EXPRESSION(min_prec):

 left := PARSE_PREFIX()

 while NEXT_TOKEN and PREC(NEXT_TOKEN) >

min_prec:

 operator := NEXT_TOKEN

 ADVANCE()

 left := PARSE_INFIX(left, operator)

 return left

Each token type (e.g. integer literal, float, parentheses)

has a dedicated handler in the parser. Right-associative

operators like exponentiation are handled by lowering

the binding precedence during infix parsing.

G. Recursive Descent for Statements

For constructs such as if, while, and function etc.,

Recursive Descent Parsing is used. For example:

PARSE_WHILE_STATEMENT():

 condition :=

PARSE_EXPRESSION(LOWEST_PRECEDENCE)

 EXPECT(COLON)

 body := []

 while CURRENT_TOKEN != END:

 body.append(PARSE_STATEMENT())

 EXPECT(END)

 return WHILE_NODE(condition, body)

Other constructs (if, function, break, etc.) follow a

similar structure with dedicated parsing functions.

H. Code Generation

After constructing the AST, the next step is code

generation, involving a recursive traversal of the AST

to emit LLVM IR.

Simplified Code Emission Logic:

EMIT(node):

 match node.type:

 case PROGRAM: visit_program(node)

 case IF: visit_if(node)

 case WHILE: visit_while(node)

 case FUNCTION: visit_function(node)

Each visit_* function translates the corresponding AST

node into LLVM IR. The implementation uses llvmlite,

a Python wrapper around LLVM, which provides a

high-level and Pythonic interface for emitting IR. This

abstraction enables the generation of efficient, portable,

and optimized machine code.

Once IR is generated, the one can support two

execution strategies:

1) Just-In-Time (JIT) Compilation, using LLVM's

MCJIT engine for immediate execution.

2) Static Compilation, producing native binaries via

standard LLVM toolchains.

RESULTS AND DISCUSSION

Currently, Crython does not support arrays or matrix

data structures. Thus, the authors are unable to

evaluate the programs having array manipulation. Due

to time constraints, the authors have planned to add

arrays for the future implementation.

Despite this limitation, the authors have benchmarked

several programs written in Crython against equivalent

implementations in other widely-used languages.

A. Test Environment

1) CPU: AMD Ryzen 5 4600H @ 3.0 GHz (12 logical

cores)

2) RAM: 16 GiB

3) Operating System: Arch Linux (Kernel 6.15.2-2-

cachyos)

Each program was executed 10 times, and the authors

have recorded the average, minimum, and maximum

execution times (in seconds) for each language.

B. Benchmark Configuration

Table 2: Benchmark Configuration Table

Language
Compiler/Interpreter

Version
Notes

C gcc (GCC) 15.1.1
Compiled

with –O3 flag

Go go1.24.4

Python Python 3.13.5

JavaScript v24.2.0

Volume 11, Issue 3, May-June-2025 | http://ijsrcseit.com

Soham Malakar et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., May-June-2025, 11 (3) : 965-973

970

Language
Compiler/Interpreter

Version
Notes

Julia julia version 1.11.5

Warm up

time

excluded

Ruby ruby 3.4.4

PHP PHP 8.4.8

Crython

C. Benchmark Programs

1) Summation of Even Numbers from 0 to

1,000,000,000

2) Recursive Fibonacci (n = 35)

3) Sum of Digits from 1 to 100,000,000

4) Count Numbers Divisible by 3 or 5 up to

1,000,000,000

5) Prime Number Test (n = 999998727)

Source codes for the above programs are given below.

These implementations are written in Crython.

Program 1:

def sum_even_numbers() -> int:

 var sum_val: int = 0

 var i: int = 0

 while i < 1000000001:

 sum_val += i

 i += 2

 end

 print("Sum of even numbers: %d", sum_val)

 return 0

end

sum_even_numbers()

Program 2:

def fibonacci(n: int) -> int:

 if n <= 1:

 return n

 end

 return fibonacci(n - 1) + fibonacci(n - 2)

end

print("Fibonacci(35): %d", fibonacci(35))

Program 3:

def sum_digits(n: int) -> int:

 var total: int = 0

 while n > 0:

 total += n % 10

 n /= 10

 end

 return total

end

def sum_all_digits() -> int:

 var total_sum: int = 0

 var i: int = 1

 while i < 100000001:

 total_sum += sum_digits(i)

 i += 1

 end

 print("Sum of all digits from 1 to 100,000,000: %d",

total_sum)

 return 0

end

sum_all_digits()

Program 4:

def count_divisible() -> int:

 var count: int = 0

 var i: int = 1

 while i < 1000000001:

 if i % 3 == 0:

 count += 1

 elif i % 5 == 0:

 count += 1

 end

 i += 1

 end

 print("Count of numbers divisible by 3 or 5: %d",

count)

 return 0

end

count_divisible()

Program 5:

def is_prime(n: int) -> bool:

 if n < 2:

 return false

 end

 if n == 2:

 return true

 end

Volume 11, Issue 3, May-June-2025 | http://ijsrcseit.com

Soham Malakar et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., May-June-2025, 11 (3) : 965-973

971

 if n % 2 == 0:

 return false

 end

 var i: int = 3

 while i < n ** 0.5 + 1:

 if n % i == 0:

 return false

 end

 i += 2

 end

 return true

end

var n: int = 999998727

if is_prime(n):

 print("%d is prime", n)

else:

 print("%d is not prime", n)

end

D. Benchmark Results

Table 3: Benchmark Table 1

Languag

e

Program 1 Program 2

Avg. Min.
Max

.

Avg

.
Min.

Max

.

C
0.00

1

0.00

1

0.00

1 0.02 0.02 0.03

Go
0.26

7

0.25

7 0.27 0.06 0.05 0.08

Python
16.0

6

15.9

1

16.2

2 1.33 1.32 1.36

JavaScri

pt 0.42 0.41

0.42

8 0.13 0.12 0.14

Julia
0.14

8

0.14

3

0.16

4 0.2 0.18 0.22

Ruby
19.8

19.6

3

20.0

8 0.87 0.87 0.88

PHP
4.70

6

4.68

4

4.74

2 0.48 0.48 0.5

Crython
0.33

6

0.33

5

0.33

7 0.13

0.12

4

0.12

7

Table 4: Benchmark Table 2

Languag

e

Program 3 Program 4

Avg

.
Min.

Max

.
Avg. Min.

Max

.

C
0.67

0.66

1

0.67

4

0.63

3

0.61

5 0.66

Go
0.86

0.85

1

0.86

3 1.18

1.17

1 1.19

Python 49.0 48.8 49.4 67.1 66.8 67.8

JavaScri

pt 2.75 2.74 2.76 1.53 1.53 1.55

Julia 0.83 0.82 0.85 1.8 1.78 1.82

Ruby 28.4 28.3 28.5 72.8 72.5 73.6

PHP 20.2 20.1 20.3 18.1 18.0 18.1

Crython 1.13 1.13 1.13 0.85 0.80 1.27

Table 5: Benchmark Table 3

Language
Program 5

Avg. Min. Max.

C 0.001 0.001 0.001

Go 0.001 0.001 0.002

Python 0.013 0.011 0.028

JavaScript 0.032 0.024 0.05

Julia 0.155 0.141 0.171

Ruby 0.043 0.041 0.053

PHP 0.015 0.012 0.031

Crython 0.082 0.082 0.083

Table 6: Mean Speedup Table

Language
Mean Execution

Time (seconds)

Speedup

(vs Crython)

Python 26.6984 52.97x

Ruby 24.3719 48.35x

PHP 8.6927 17.25x

JavaScript 0.9737 1.93x

Julia 0.6266 1.24x

Crython 0.504 1x

Go 0.4723 0.94x

C 0.2646 0.53x

Volume 11, Issue 3, May-June-2025 | http://ijsrcseit.com

Soham Malakar et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., May-June-2025, 11 (3) : 965-973

972

Fig. 2: Speedup Barchart

E. Discussion

From Fig. 2, it is clear that Cryton outperforms many

interpreted languages such as Python, Ruby, PHP and

JavaScript in these specific use cases. As Crython uses

LLVM tools to generate native code, it performs

considerably well among these programming

languages. Although, Go and Julia perform slightly

better in some cases, Crython remains close. As

expected, C is the fastest overall due to its maturity and

low-level optimization. With maturation of Crython,

further performance improvements are expected in

future iterations.

CONCLUSION

In this work, the authors introduce a compiler that

combines the syntactic elegance of Python with the

execution efficiency of C. The proposed language

Crython is designed to support rapid prototyping while

delivering significant performance improvements over

interpreted languages like Python. As evidenced by

benchmark results, the language performs

competitively and, in many cases, surpasses several

popular programming languages in terms of execution

speed.

The present compiler follows a conventional multi-

phase architecture, comprising lexical analysis, parsing,

and code generation. A key innovation lies in the

introduction of a Sanitizer module, which

automatically inserts semicolons during the token

stream preprocessing stage. This feature allows

developers to omit semicolons without syntactic

ambiguity, enabling them to write cleaner and more

readable code while avoiding the pitfalls of Python's

indentation-sensitive syntax. The result is a language

that feels intuitive yet avoids ambiguities during

parsing.

For backend code generation, the authors utilize the

LLVM toolchain via the llvmlite library. The compiler

translates the AST into LLVM IR, which is

subsequently compiled into native machine code.

Unlike Python which compiles to stack-based

bytecode executed within a virtual machine; Crython

produces machine-level instructions that run directly

on hardware. This native code execution offers

considerable performance benefits, especially for

compute-intensive workloads.

Currently, the language is kept intentionally minimal

and does not include features such as arrays, file I/O, or

a standard library. Future development will focus on

expanding the language with support for both static

and dynamic type systems, allowing developers to

select either performance-critical or flexible

programming paradigms.

The complete source code, along with sample programs

and documentation, is publicly available on GitHub:

https://github.com/SohamMalakar/purrgram-llvm

References

[1]. A. V. Aho and J. D. Ullman, Principles of

compiler design. New Delhi, India: Narosa Publ.

House, 1999.

[2]. “6. Expressions — Python 3.10.7

documentation,” docs.python.org.

https://docs.python.org/3/reference/expressions.

html#operator-precedence

[3]. V. R. Pratt, “Top down operator precedence,”

Proceedings of the 1st annual ACM SIGACT-

SIGPLAN symposium on Principles of

programming languages - POPL ’73, 1973, doi:

https://doi.org/10.1145/512927.512931.

[4]. “User guide — llvmlite

0.45.0dev0+224.g2fbac84.dirty documentation,”

Readthedocs.io, 2015.

Volume 11, Issue 3, May-June-2025 | http://ijsrcseit.com

Soham Malakar et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., May-June-2025, 11 (3) : 965-973

973

https://llvmlite.readthedocs.io/en/latest/user-

guide/index.html

[5]. “The Go Programming Language Specification -

The Go Programming Language,” Go.dev, 2024.

https://go.dev/ref/spec#Semicolons

[6]. “7. Simple statements,” Python documentation.

https://docs.python.org/3/reference/simple_stmt

s.html#the-global-statement

[7]. C. Lattner and V. Adve, “LLVM: A Compilation

Framework for Lifelong Program Analysis &

Transformation.” Accessed: May 22, 2025.

[Online]. Available:

https://www.llvm.org/pubs/2004-01-30-CGO-

LLVM.pdf

[8]. “Chunks of Bytecode Crafting Interpreters,”

Craftinginterpreters.com, 2015.

https://craftinginterpreters.com/chunks-of-

bytecode.html#bytecode (accessed May 22,

2025).

[9]. Craftinginterpreters.com, 2025.

https://craftinginterpreters.com/a-virtual-

machine.html#design-note (accessed May 23,

2025).

[10]. C. Ye, Z. Shen, Y. Wu, and P. Loskot,

“Reconsidering Python Syntax to Enhance

Programming Productivity,” International

Journal for Research in Applied Science and

Engineering Technology, vol. 12, no. 3, pp. 776–

785, Mar. 2024, doi:

https://doi.org/10.22214/ijraset.2024.58903.

[11]. “ctypes — A foreign function library for Python

— Python 3.9.5 documentation,”

docs.python.org.

https://docs.python.org/3/library/ctypes.html

[12]. H.-J. Boehm and M. Weiser, “Garbage collection

in an uncooperative environment,” Software:

Practice and Experience, vol. 18, no. 9, pp. 807–

820, Sep. 1988, doi:

https://doi.org/10.1002/spe.4380180902.

