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 Contemporary programming languages often pose a challenge due to either 

complex syntax or performance limitations, especially in dynamically typed 

environments. The language proposed in this paper, Crython, aims to mitigate 

these challenges by offering a beginner-friendly, Python-like syntax combined 

with performance that approaches that of C. It is built with a custom lexer, 

employs a Pratt parser for expression handling, and uses a Recursive Descent 

parser for statements. Code generation is powered by LLVM, leveraging its 

robust toolchain to simplify backend implementation and deliver high execution 

speed. While the syntax is intentionally similar to Python to facilitate ease of 

adoption, it also addresses certain ambiguities and inconsistencies found in 

Python’s design. The paper includes performance benchmarks across multiple 

languages to demonstrate the efficiency and competitiveness of the proposed 

language. 
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Introduction 

Modern programming languages are becoming 

increasingly complex, making them harder to learn, 

especially for beginners. While languages like Python 

are accessible and easy to learn, they often lag in 

performance. In contrast, high-performance languages 

such as C or C++ typically involve a steeper learning 

curve. In this paper, the authors have combined the 

best of both worlds thereby making the proposed 

language fast and easy to learn. As the language’s 

syntax is reminiscent of Python's syntax, users are not 

required to relearn a whole new language from scratch. 

Although the syntax is similar, the backend is 

completely different from Python as Crython is a 

statically-typed programming language making its 

performance comparable to C. It acts as a bridge 

between Python’s simplicity and C’s performance. 

In the paper by C. Ye, Z. Shen, Y. Wu, and P. Loskot 

[10], the authors highlight that Python has a clear 

advantage in terms of its learning curve, largely due to 
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its concise and beginner-friendly syntax. This makes it 

easier for newcomers to quickly get started with 

programming in Python. Given the widespread 

familiarity with Python’s syntax, the authors have 

designed Crython to closely follow Python’s structure. 

The goal is to make the language more accessible and 

comfortable for users by leveraging the simplicity and 

popularity of Python’s syntax. 

Although Python’s syntax is beginner-friendly, it has 

many flaws. Strict indentation rule is one of them. 

Beginners often overlook proper whitespace usage in 

their code. This often causes significant issues while 

debugging. Copying a Python code might mess up the 

entire indentation. Sometimes tabs and spaces are both 

present in the codebase which can make debugging 

extremely difficult. While indentation enhances 

readability, it restricts the programmer’s freedom in 

organizing code. 

As Python does not have a keyword to declare 

variables it suffers from local and global scoping. Put 

simply, initializing a variable outside a function 

definition, creates a global variable. Accessing a 

variable within a function is generally acceptable, 

provided that the variable is not modified. 

For example, 

x = 10 

def fun(): 

    print(x) 

The above program works correctly because the 

variable x is not modified. The x simply acts as the 

global variable. 

x = 10 

def fun(): 

    x = 5 

This program also works. In the fun function x is a local 

variable. This does not change the global x. 

x = 10 

def fun(): 

    x += 5 

The code above produces an error because x is treated 

as a local variable, but it has not been defined locally. 

Although Python provides two keywords global and 

nonlocal that solve this issue. [6]. However, this 

approach can feel cumbersome in practice. In such 

cases, C-style declarations often provide a clearer and 

more suitable alternative. 

int x = 10; 

void fun() { 

    x += 5; 

} 

C-style declaration makes the variable declaration 

quite simple. In Crython, the var keyword is used to 

declare variables. This solves the problem of Python’s 

global and local scope reducing the unintentional bugs. 

Finally, indentation sometimes causes issues with the 

multiline statements. 

For example, 

x = "Hello " + 

    "World" 

These kinds of statements sometimes throw syntax 

errors because of less or more indentation. To address 

this issue, Crython is designed to completely ignore all 

whitespace. During lexical analysis, whitespace 

characters are excluded from the token stream, 

effectively eliminating potential errors caused by 

incorrect spacing. 

But this solution comes with one compromise. 

Statements must be terminated with a semicolon; 

otherwise, the compiler cannot determine where the 

current statement ends. This is a fundamental problem 

of all programming languages that ignore whitespaces. 

To address this limitation, an automatic semicolon 

insertion technique, referred to as the Sanitizer, is 

implemented. It smartly inserts semicolons after each 

statement. This technique is similar to Go’s 

implementation [5] of auto semicolon insertion. 

However, this approach is stricter than Go’s 

implementation. This is discussed in detail in the later 

section of the paper. 

Since the language utilizes the LLVM backend, the 

compiler can benefit from extensive optimization 

opportunities [7]. All the techniques are discussed in 

detail in the later section. 
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The implementation of custom lexer and parser is also 

discussed in that section. 

 

METHODS AND MATERIAL 

A. Literature Review 

A compiler is traditionally divided into two main 

components: the frontend and the backend. The 

frontend handles lexical, syntactic, and semantic 

analysis, while the backend is responsible for code 

generation and optimization [1]. 

In this work, the authors have developed a custom 

frontend from scratch to maintain full control over the 

compilation process. Although a variety of lexer and 

parser generators are available such as Lex and YACC, 

as well as more modern tools like ANTLR; a low-level, 

handcrafted approach was chosen to maintain greater 

control over the compilation process. This decision was 

guided by the intention to maintain focus on the core 

objectives of the project, rather than diverting 

attention to the evaluation and integration of 

additional tools. 

The current implementation uses a custom lexer, along 

with a combination of a Pratt parser [3] and a Recursive 

Descent parser. The Pratt parser is employed for 

parsing expressions, as it offers excellent scalability and 

makes it easy to introduce new operators. A Recursive 

Descent parser is used for statement parsing, as it is 

straightforward to implement and sufficient for the 

intended purpose. 

On the backend, the authors chose to target native 

code using the LLVM infrastructure rather than 

implementing a bytecode-based virtual machine. This 

decision reflects the authors’ aim to ensure optimal 

performance. Native compilation involves translating 

source code directly into machine code, which runs 

directly on hardware and thus offers superior 

execution speed. 

In contrast, Python follows a bytecode execution 

model. Python source code is first compiled into 

bytecode, which is then executed by the Python virtual 

machine. This indirection introduces overhead and 

results in slower performance compared to native 

execution. Bytecode approaches can be categorized 

into stack-based and register-based instruction sets. 

Python utilizes a stack-based model, which employs 

zero-address instructions, whereas register-based 

models use three-address instructions [9]. While stack-

based virtual machines are simpler to implement, they 

tend to be less efficient than their register-based 

counterparts. 

Despite the relative simplicity of stack-based bytecode, 

implementing a virtual machine from scratch remains 

a complex and effort-intensive task [8]. Conversely, 

while native code generation may seem more 

challenging, LLVM significantly lowers the barrier by 

providing a clean and well-documented interface. In 

this project, llvmlite [4] is leveraged to interact with 

LLVM. This allows the compiler to generate LLVM 

intermediate representation (IR), which is then 

compiled by LLVM into optimized native code across 

different architectures. This approach not only 

simplifies backend development but also results in 

high-performance executables. 

Currently, for the string implementation, heap 

allocation is performed making the language un-

optimized for the string-related operations. A C library 

function GC_malloc is called for allocating memory 

from heap. This is a built-in garbage collector also 

known as Boehm’s Garbage Collector [12]. It 

guarantees that no memory leaks while doing string-

related operations. The GC_malloc function is called 

using the Foreign Function Interface of Python 

through ctypes library [11]. 

As this is the first iteration of the compiler, the feature 

set has been intentionally kept minimal. As a result, 

support for arrays, file I/O, and a standard library is not 

included in the current implementation. Due to time 

constraints, these features could not be implemented, 

but the authors plan to introduce them in future 

iterations of the language. 

B. Compiler Pipeline Overview 

The compiler is structured as a modular pipeline, with 

each stage performing a distinct task and passing its 
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output to the next stage. The primary components of 

the pipeline are: 

1) Lexer 

2) Sanitizer 

3) Parser 

4) Code Generator 

Each module operates independently to ensure 

maintainability and extensibility. 

 
Fig. 1: Compilation Pipeline Diagram 

 

C. Lexical Analysis 

The compilation process begins with lexical analysis, 

where the raw source code is read as a string and passed 

to the Lexer. The Lexer processes the input character 

by character to generate a stream of tokens, each 

representing meaningful units such as keywords, 

identifiers, literals, and operators. 

For example, given the statement: 

name = "John"; 

The Lexer encounters n and identifies it as the start of 

an identifier or keyword. It then constructs the 

complete token name and classifies it as an identifier. 

Every token also records its position in the source code, 

which is essential for precise error reporting. This 

tokenization continues until the entire input is 

processed into a structured token list. 

D. Sanitization 

Whitespace tokens, such as newlines, are not retained 

in the implementation. As a result, statements must be 

explicitly separated typically with semicolons. While 

retaining newline characters could serve as implicit 

separators, this would complicate parsing multiline 

expressions. 

Example: 

x = "Hello " + 

    "World" 

Requiring manual semicolon placement would be 

error-prone and tedious, particularly for users familiar 

with Python’s clean syntax. To address this, the 

authors have implemented automatic semicolon 

insertion, a strategy inspired by Go’s compiler design 

[5]. 

The Sanitizer analyzes both the last token of the 

current line and the first token of the next line to 

determine where semicolons should be inserted unlike 

Go, which considers only the former. This enables 

support for complex constructs such as method 

chaining and split-line expressions. 

Example: 

x = 42 

    * 69 

y = 5 

This pattern is correctly parsed by the Crython’s 

compiler, whereas Go’s strategy would fail. 

E. Syntax Analysis 

The Parser takes the sanitized token stream and 

constructs an Abstract Syntax Tree (AST). The 

approach combines two parsing strategies: 

1) Pratt Parsing for expressions, which enables 

efficient handling of operator precedence [2] and 

associativity. 

2) Recursive Descent Parsing for statements, which 

simplifies rule-based parsing of control structures 

and declarations. 

 

Table 1: Simplified Operator Precedence Table 

Operator Precedence 

Lowest 0 

Sum 1 

Product 2 

Exponent 3 
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This table allows the Pratt parser to: 

1) Determine when to stop parsing a subexpression. 

2) Decide which operator binds more tightly. 

3) Respect associativity (left-to-right or right-to-

left). 

F. Simplified Pratt Parsing Logic 

PARSE_EXPRESSION(min_prec): 

    left := PARSE_PREFIX() 

    while NEXT_TOKEN and PREC(NEXT_TOKEN) > 

min_prec: 

        operator := NEXT_TOKEN 

        ADVANCE() 

        left := PARSE_INFIX(left, operator) 

    return left 

Each token type (e.g. integer literal, float, parentheses) 

has a dedicated handler in the parser. Right-associative 

operators like exponentiation are handled by lowering 

the binding precedence during infix parsing. 

G. Recursive Descent for Statements 

For constructs such as if, while, and function etc., 

Recursive Descent Parsing is used. For example: 

PARSE_WHILE_STATEMENT(): 

    condition := 

PARSE_EXPRESSION(LOWEST_PRECEDENCE) 

    EXPECT(COLON) 

    body := [] 

    while CURRENT_TOKEN != END: 

        body.append(PARSE_STATEMENT()) 

    EXPECT(END) 

    return WHILE_NODE(condition, body) 

Other constructs (if, function, break, etc.) follow a 

similar structure with dedicated parsing functions. 

H. Code Generation 

After constructing the AST, the next step is code 

generation, involving a recursive traversal of the AST 

to emit LLVM IR. 

Simplified Code Emission Logic: 

EMIT(node): 

    match node.type: 

        case PROGRAM: visit_program(node) 

        case IF: visit_if(node) 

        case WHILE: visit_while(node) 

        case FUNCTION: visit_function(node) 

Each visit_* function translates the corresponding AST 

node into LLVM IR. The implementation uses llvmlite, 

a Python wrapper around LLVM, which provides a 

high-level and Pythonic interface for emitting IR. This 

abstraction enables the generation of efficient, portable, 

and optimized machine code. 

Once IR is generated, the one can support two 

execution strategies: 

1) Just-In-Time (JIT) Compilation, using LLVM's 

MCJIT engine for immediate execution. 

2) Static Compilation, producing native binaries via 

standard LLVM toolchains. 

 

RESULTS AND DISCUSSION 

Currently, Crython does not support arrays or matrix 

data structures. Thus, the authors are unable to 

evaluate the programs having array manipulation. Due 

to time constraints, the authors have planned to add 

arrays for the future implementation. 

Despite this limitation, the authors have benchmarked 

several programs written in Crython against equivalent 

implementations in other widely-used languages. 

A. Test Environment 

1) CPU: AMD Ryzen 5 4600H @ 3.0 GHz (12 logical 

cores) 

2) RAM: 16 GiB 

3) Operating System: Arch Linux (Kernel 6.15.2-2-

cachyos) 

Each program was executed 10 times, and the authors 

have recorded the average, minimum, and maximum 

execution times (in seconds) for each language. 

B. Benchmark Configuration 

Table 2: Benchmark Configuration Table 

Language 
Compiler/Interpreter 

Version 
Notes 

C gcc (GCC) 15.1.1 
Compiled 

with –O3 flag 

Go go1.24.4  

Python Python 3.13.5  

JavaScript v24.2.0  
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Language 
Compiler/Interpreter 

Version 
Notes 

Julia julia version 1.11.5 

Warm up 

time 

excluded 

Ruby ruby 3.4.4  

PHP PHP 8.4.8  

Crython   

C. Benchmark Programs 

1) Summation of Even Numbers from 0 to 

1,000,000,000 

2) Recursive Fibonacci (n = 35) 

3) Sum of Digits from 1 to 100,000,000 

4) Count Numbers Divisible by 3 or 5 up to 

1,000,000,000 

5) Prime Number Test (n = 999998727) 

Source codes for the above programs are given below. 

These implementations are written in Crython. 

Program 1: 

def sum_even_numbers() -> int: 

    var sum_val: int = 0 

    var i: int = 0 

    while i < 1000000001: 

        sum_val += i 

        i += 2 

    end 

    print("Sum of even numbers: %d", sum_val) 

    return 0 

end 

sum_even_numbers() 

Program 2: 

def fibonacci(n: int) -> int: 

    if n <= 1: 

        return n 

    end 

    return fibonacci(n - 1) + fibonacci(n - 2) 

end 

print("Fibonacci(35): %d", fibonacci(35)) 

Program 3: 

def sum_digits(n: int) -> int: 

    var total: int = 0 

    while n > 0: 

        total += n % 10 

        n /= 10 

    end 

    return total 

end 

def sum_all_digits() -> int: 

    var total_sum: int = 0 

    var i: int = 1 

    while i < 100000001: 

        total_sum += sum_digits(i) 

        i += 1 

    end 

    print("Sum of all digits from 1 to 100,000,000: %d", 

total_sum) 

    return 0 

end 

sum_all_digits() 

Program 4: 

def count_divisible() -> int: 

    var count: int = 0 

    var i: int = 1 

    while i < 1000000001: 

        if i % 3 == 0: 

            count += 1 

        elif i % 5 == 0: 

            count += 1 

        end 

        i += 1 

    end 

    print("Count of numbers divisible by 3 or 5: %d", 

count) 

    return 0 

end 

count_divisible() 

Program 5: 

def is_prime(n: int) -> bool: 

    if n < 2: 

        return false 

    end 

    if n == 2: 

        return true 

    end 
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    if n % 2 == 0: 

        return false 

    end 

    var i: int = 3 

    while i < n ** 0.5 + 1: 

        if n % i == 0: 

            return false 

        end 

        i += 2 

    end 

    return true 

end 

var n: int = 999998727 

if is_prime(n): 

    print("%d is prime", n) 

else: 

    print("%d is not prime", n) 

end 

D. Benchmark Results 

Table 3: Benchmark Table 1 

Languag

e 

Program 1 Program 2 

Avg. Min. 
Max

. 

Avg

. 
Min. 

Max

. 

C 
0.00

1 

0.00

1 

0.00

1 0.02 0.02 0.03 

Go 
0.26

7 

0.25

7 0.27 0.06 0.05 0.08 

Python 
16.0

6 

15.9

1 

16.2

2 1.33 1.32 1.36 

JavaScri

pt 0.42 0.41 

0.42

8 0.13 0.12 0.14 

Julia 
0.14

8 

0.14

3 

0.16

4 0.2 0.18 0.22 

Ruby 
19.8 

19.6

3 

20.0

8 0.87 0.87 0.88 

PHP 
4.70

6 

4.68

4 

4.74

2 0.48 0.48 0.5 

Crython 
0.33

6 

0.33

5 

0.33

7 0.13 

0.12

4 

0.12

7 

 

Table 4: Benchmark Table 2 

Languag

e 

Program 3 Program 4 

Avg

. 
Min. 

Max

. 
Avg. Min. 

Max

. 

C 
0.67 

0.66

1 

0.67

4 

0.63

3 

0.61

5 0.66 

Go 
0.86 

0.85

1 

0.86

3 1.18 

1.17

1 1.19 

Python 49.0 48.8 49.4 67.1 66.8 67.8 

JavaScri

pt 2.75 2.74 2.76 1.53 1.53 1.55 

Julia 0.83 0.82 0.85 1.8 1.78 1.82 

Ruby 28.4 28.3 28.5 72.8 72.5 73.6 

PHP 20.2 20.1 20.3 18.1 18.0 18.1 

Crython 1.13 1.13 1.13 0.85 0.80 1.27 

 

Table 5: Benchmark Table 3 

Language 
Program 5 

Avg. Min. Max. 

C 0.001 0.001 0.001 

Go 0.001 0.001 0.002 

Python 0.013 0.011 0.028 

JavaScript 0.032 0.024 0.05 

Julia 0.155 0.141 0.171 

Ruby 0.043 0.041 0.053 

PHP 0.015 0.012 0.031 

Crython 0.082 0.082 0.083 

 

Table 6: Mean Speedup Table 

Language 
Mean Execution 

Time (seconds) 

Speedup  

(vs Crython) 

Python 26.6984 52.97x 

Ruby 24.3719 48.35x 

PHP 8.6927 17.25x 

JavaScript 0.9737 1.93x 

Julia 0.6266 1.24x 

Crython 0.504 1x 

Go 0.4723 0.94x 

C 0.2646 0.53x 
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Fig. 2: Speedup Barchart 

E. Discussion 

From Fig. 2, it is clear that Cryton outperforms many 

interpreted languages such as Python, Ruby, PHP and 

JavaScript in these specific use cases. As Crython uses 

LLVM tools to generate native code, it performs 

considerably well among these programming 

languages. Although, Go and Julia perform slightly 

better in some cases, Crython remains close. As 

expected, C is the fastest overall due to its maturity and 

low-level optimization. With maturation of Crython, 

further performance improvements are expected in 

future iterations. 

 

CONCLUSION 

In this work, the authors introduce a compiler that 

combines the syntactic elegance of Python with the 

execution efficiency of C. The proposed language 

Crython is designed to support rapid prototyping while 

delivering significant performance improvements over 

interpreted languages like Python. As evidenced by 

benchmark results, the language performs 

competitively and, in many cases, surpasses several 

popular programming languages in terms of execution 

speed. 

The present compiler follows a conventional multi-

phase architecture, comprising lexical analysis, parsing, 

and code generation. A key innovation lies in the 

introduction of a Sanitizer module, which 

automatically inserts semicolons during the token 

stream preprocessing stage. This feature allows 

developers to omit semicolons without syntactic 

ambiguity, enabling them to write cleaner and more 

readable code while avoiding the pitfalls of Python's 

indentation-sensitive syntax. The result is a language 

that feels intuitive yet avoids ambiguities during 

parsing. 

For backend code generation, the authors utilize the 

LLVM toolchain via the llvmlite library. The compiler 

translates the AST into LLVM IR, which is 

subsequently compiled into native machine code. 

Unlike Python which compiles to stack-based 

bytecode executed within a virtual machine; Crython 

produces machine-level instructions that run directly 

on hardware. This native code execution offers 

considerable performance benefits, especially for 

compute-intensive workloads. 

Currently, the language is kept intentionally minimal 

and does not include features such as arrays, file I/O, or 

a standard library. Future development will focus on 

expanding the language with support for both static 

and dynamic type systems, allowing developers to 

select either performance-critical or flexible 

programming paradigms. 

The complete source code, along with sample programs 

and documentation, is publicly available on GitHub: 

https://github.com/SohamMalakar/purrgram-llvm 
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