Frontiers in Advanced Materials for Energy Harvesting and Storage in Sustainable Technologies

Authors

  • Sujata Saini Department of Biosciences, Chandigarh University1*, Punjab, India and Department of Biotechnology, Chandigarh University, Punjab, India Author
  • Shabnum Shafi Department of Biosciences, Chandigarh University1*, Punjab, India and Department of Biotechnology, Chandigarh University, Punjab, India Author

DOI:

https://doi.org/10.32628/CSEIT25111670

Keywords:

Energy harvesting, Nanostructured materials, Solid-state batteries, Bio-inspired materials, Sustainable technologies

Abstract

The global pursuit of sustainable energy has spurred transformative innovations in materials designed for energy harvesting and storage, enabling efficient utilization of renewable resources. This manuscript examines recent progress in energy harvesting technologies, including piezoelectric, thermoelectric, and photovoltaic systems, which convert ambient energy sources like vibrations, heat, and sunlight into electrical power. Simultaneously, advancements in storage solutions, such as solid-state batteries, supercapacitors, and novel electrode materials, enhance energy retention and delivery. The integration of nanostructured composites, two-dimensional materials like graphene, and bio-inspired designs has significantly improved energy conversion efficiency, storage capacity, and cycle stability. These developments address critical challenges, including scalability, cost-effectiveness, and environmental sustainability, through initiatives like battery recycling and the use of non-toxic materials. The abstract explores diverse applications, from wearable electronics and autonomous devices to grid-scale energy storage, and underscores the importance of interdisciplinary research to drive the transition toward a clean energy future.

📊 Article Downloads

References

Xie L, Wang Y, Su Y, et al. Recent Progress in Advanced Energy Materials for Flexible Energy Harvesting and Storage Devices. Adv Funct Mater. 2020;30(9):1909953.

Zhao Y, Li R, Cao J, et al. Materials Design for Next‐Generation Portable and Wearable Energy Storage Systems. Adv Mater. 2021;33(8):2006444. DOI: https://doi.org/10.1002/adma.202006444

Zuo Y, Zhang L, Pei H, et al. Progress and Perspectives in Flexible Perovskite Solar Cells. Small Struct. 2021;2(1):2000070.

Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature. 2001;414(6861):359-367. DOI: https://doi.org/10.1038/35104644

Rowe DM. Thermoelectric waste heat recovery as a renewable energy source. Int J Innov Energy Syst Power. 2006; 1:13–23.

Green MA, Dunlop ED, Hohl‐Ebinger J, Yoshita M, Kopidakis N, Hao X. Solar cell efficiency tables (version 62). Prog Photovolt Res Appl. 2023;31(7):647–657.

Wang ZL, Song J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science. 2006;312(5771):242-246.

Ma Y, Zheng Q, Liu Y, et al. Self-Powered Flexible and Stretchable Electronics. Adv Mater. 2020;32(15):1902062.

Simon P, Gogotsi Y. Materials for electrochemical capacitors. Nat Mater. 2008;7(11):845-854.

Goodenough JB, Park KS. The Li-ion rechargeable battery: a perspective. J Am Chem Soc. 2013;135(4):1167-1176. DOI: https://doi.org/10.1021/ja3091438

Manthiram A. A reflection on lithium-ion battery cathode chemistry. Nat Commun. 2020;11(1):1550.

Stoller MD, Park S, Yanwu Z, An J, Ruoff RS. Graphene-based supercapacitors. Nano Lett. 2008;8(10):3498-3502.

Su DS, Schlögl R. Nanostructured carbon and carbon nanocomposites for electrochemical energy storage applications. ChemSusChem. 2010;3(2):136-168.

Wang K, Huang J, Wei Z. Conducting polymer nanowire arrays for high performance supercapacitors. J Mater Chem. 2012;22(45):23557-23561.

Wang ZL, Song J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science. 2006;312(5771):242-246.

Zhai Y, Dou Y, Zhao D, Fulvio PF, Mayes RT, Dai S. Carbon materials for chemical capacitive energy storage. Adv Mater. 2011;23(42):4828-4850. DOI: https://doi.org/10.1002/adma.201100984

Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science. 2004;306(5696):666-669. DOI: https://doi.org/10.1126/science.1102896

Chhowalla M, Shin HS, Eda G, Li L-J, Loh KP, Zhang H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem. 2013;5(4):263-275. DOI: https://doi.org/10.1038/nchem.1589

Stoller MD, Park S, Yanwu Z, An J, Ruoff RS. Graphene-based supercapacitors. Nano Lett. 2008;8(10):3498-3502. DOI: https://doi.org/10.1021/nl802558y

Stoppa M, Chiolerio A. Wearable electronics and smart textiles: a critical review. Sensors (Basel). 2014;14(7):11957-11992.

Shanmukaraj D, Wang Y, Boulaoued A, et al. Greener approaches toward sustainable batteries. Nat Commun. 2022;13(1):3133.

Chen C, Kuang Y, Hu L. Challenges and opportunities for wood-based energy devices and materials. Energy Environ Sci. 2019;12:2548–2569.

Butler KT, Davies DW, Cartwright H, Isayev O, Walsh A. Machine learning for molecular and materials science. Nature. 2018;559:547–555.

Peplow M. The battery revolution that will let us all be power brokers. Nature. 2016;536(7617):20-23. DOI: https://doi.org/10.1038/536266a

Becquerel E. On the effects of solar radiation on electromotive force. Comptes Rendus. 1839;9:561–567.

Rowe DM. Thermoelectric waste heat recovery as a renewable energy source. Int J Innov Energy Syst Power. 2006;1:13–23.

Curie J, Curie P. Développement, par pression, de l'électricité polaire dans les cristaux hémièdres à faces inclinées. C R Hebd Seances Acad Sci. 1880;91:294–297. DOI: https://doi.org/10.3406/bulmi.1880.1564

Linden D, Reddy TB. Handbook of Batteries. 3rd ed. New York: McGraw-Hill; 2002. p. 1.1–1.13.

Yoshino A. The birth of the lithium-ion battery. Angew Chem Int Ed Engl. 2012;51(24):5798-5800. DOI: https://doi.org/10.1002/anie.201105006

Su DS, Schlögl, R. Nanostructured carbon and carbon nanocomposites for electrochemical energy storage applications. ChemSusChem. 2010;3(2):136-168.

Wang ZL, Song J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science. 2006;312(5771):242-246.

Green MA, Dunlop ED, Hohl‐Ebinger J, Yoshita M, Kopidakis N, Hao X. Solar cell efficiency tables (version 62). Prog Photovolt Res Appl. 2023;31(7):647–657. DOI: https://doi.org/10.1002/pip.3726

NREL. Best Research-Cell Efficiency Chart. National Renewable Energy Laboratory [Internet]. 2023 [cited 2024 May 25]. Available from: https://www.nrel.gov/pv/cell-efficiency.html

Zhao Y, Zhu K. Organic–inorganic hybrid lead halide perovskites for optoelectronic and electronic applications. Chem Soc Rev. 2016;45(3):655-689. DOI: https://doi.org/10.1039/C4CS00458B

Wang H, Kim DH. Perovskite-based photodetectors: Materials and devices. Chem Soc Rev. 2017;46:5204–5236. DOI: https://doi.org/10.1039/C6CS00896H

Lin Y, Wang J, Zhang ZG, et al. An electron acceptor challenging fullerenes for efficient polymer solar cells. Adv Mater. 2015;27(7):1170-1174. DOI: https://doi.org/10.1002/adma.201404317

Snyder GJ, Toberer ES. Complex thermoelectric materials. Nat Mater. 2008;7(2):105-114. DOI: https://doi.org/10.1038/nmat2090

Poudel B, Hao Q, Ma Y, et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science. 2008;320(5876):634-638. DOI: https://doi.org/10.1126/science.1156446

Zhang Q, Sun Y, Xu W, Zhu D. Organic thermoelectric materials: emerging green energy materials converting heat to electricity directly and efficiently. Adv Mater. 2014;26(40):6829-6851. DOI: https://doi.org/10.1002/adma.201305371

Zhang LC, Lou XWD. Nanostructured metal oxides for rechargeable lithium-ion batteries. Adv Mater. 2013;25(32):4529-4544.

Rödel J, Jo W, Seifert K, Anton EM, Granzow T, Damjanovic D. Perspective on the development of lead-free piezoceramics. J Am Ceram Soc. 2009;92(6):1153-1177. DOI: https://doi.org/10.1111/j.1551-2916.2009.03061.x

Wang ZL, Song J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science. 2006;312(5771):242-246. DOI: https://doi.org/10.1126/science.1124005

Dagdeviren C, Yang BD, Su Y, et al. Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm. Proc Natl Acad Sci USA. 2014;111(5):1927-1932. DOI: https://doi.org/10.1073/pnas.1317233111

Ko S, Kim S, Kim W, et al. Integrated hybrid energy harvesting devices: current status and future directions. Nano Energy. 2023;113:108613.

Xu S, Qin Y, Xu C, Wei Y, Yang R, Wang ZL. Self-powered nanowire devices. Nat Nanotechnol. 2010;5:366–373.

Ko S, Kim S, Kim W, et al. Integrated hybrid energy harvesting devices: current status and future directions. Nano Energy. 2023;113:108613.

Xu S, Qin Y, Xu C, Wei Y, Yang R, Wang ZL. Self-powered nanowire devices. Nat Nanotechnol. 2010;5:366–373. DOI: https://doi.org/10.1038/nnano.2010.46

Stoppa M, Chiolerio A. Wearable electronics and smart textiles: a critical review. Sensors (Basel). 2014;14(7):11957-11992. DOI: https://doi.org/10.3390/s140711957

Liu W, Lin D, Chen G, Xie J, et al. Garnet solid electrolyte protected Li-metal batteries. J Am Chem Soc. 2016;138(30):9753-9756.

Janek J, Zeier WG. A solid future for battery development. Nat Energy. 2016;1:16141. DOI: https://doi.org/10.1038/nenergy.2016.141

Simon P, Gogotsi Y. Materials for electrochemical capacitors. Nat Mater. 2008;7(11):845-854. DOI: https://doi.org/10.1038/nmat2297

Wang K, Huang J, Wei Z. Conducting polymer nanowire arrays for high performance supercapacitors. J Mater Chem. 2012;22(45):23557-23561.

Manthiram A. A reflection on lithium-ion battery cathode chemistry. Nat Commun. 2020;11(1):1550. DOI: https://doi.org/10.1038/s41467-020-15355-0

Hwang JY, Myung ST, Sun YK. Sodium-ion batteries: Present and future. Chem Soc Rev. 2017;46(12):3529-3614. DOI: https://doi.org/10.1039/C6CS00776G

Yin YX, Xin S, Guo YG, Wan LJ. Lithium–sulfur batteries: Electrochemistry, materials, and prospects. Angew Chem Int Ed Engl. 2013;52(50):13186-13200. DOI: https://doi.org/10.1002/anie.201304762

Tan B, Liu J, Chen Y, et al. Biodegradable and sustainable materials for implantable batteries. Adv Funct Mater. 2022;32(1):2108554.

Guo W, Liu L, Yu Y, et al. Hierarchical structure and functional materials for flexible and wearable energy storage devices. Small Methods. 2019;3(10):1900263.

Chen G, Qiu J, Chen J, et al. Highly stretchable, self‐healing, and water‐proof hydrogel for flexible and wearable energy storage. Adv Mater. 2020;32(31):2001894.

Third-party report: The cobalt supply chain and its impact on the global battery industry. Nat Sustain. 2020;3(5):377-384.

Butler KT, Davies DW, Cartwright H, Isayev O, Walsh A. Machine learning for molecular and materials science. Nature. 2018;559:547–555. DOI: https://doi.org/10.1038/s41586-018-0337-2

Ma Y, Zheng Q, Liu Y, et al. Self-powered flexible and stretchable electronics. Adv Mater. 2020;32(15):1902062. DOI: https://doi.org/10.1002/adma.201902062

Zang Y, Zhang F, Di C-A, Zhu D. Advances of flexible pressure sensors toward artificial intelligence and health care applications. Mater Horiz. 2015;2(2):140-156. DOI: https://doi.org/10.1039/C4MH00147H

Li Q, Shi X-L, Wu Y, Chen Y, Huang H. Recent advances in flexible micro-supercapacitors for wearable applications. Small. 2021;17(19):2006851.

Peng X, Zhang H, Lei H, Zhang J. Recent advances in flexible micro‐supercapacitors for wearable applications. Small. 2023;19(5):e2205766.

Zhang LC, Lou XWD. Nanostructured metal oxides for rechargeable lithium-ion batteries. Adv Mater. 2013;25(32):4529-4544.

Shi X, Zhang Y, Ma F, et al. Origami‐inspired encapsulation and integration for flexible energy harvesting devices. Adv Funct Mater. 2021;31(11):2006836.

Zhu J, Jiang Y, Leydecker T, Samorì P. Supercapacitors Based on Two-Dimensional Materials: Recent Progress and Future Trends. Chem Soc Rev. 2018;47(13):4374-4400.

Chen G, Qiu J, Chen J, et al. Highly stretchable, self‐healing, and water‐proof hydrogel for flexible and wearable energy storage. Adv Mater. 2020;32(31):2001894.

Chen G, Qiu J, Chen J, et al. Highly stretchable, self‐healing, and water‐proof hydrogel for flexible and wearable energy storage. Adv Mater. 2020;32(31):2001894.

Shi X, Zhang Y, Ma F, et al. Origami‐inspired encapsulation and integration for flexible energy harvesting devices. Adv Funct Mater. 2021;31(11):2006836.

Shanmukaraj D, Wang Y, Boulaoued A, et al. Greener approaches toward sustainable batteries. Nat Commun. 2022;13(1):3133.

Shanmukaraj D, Wang Y, Boulaoued A, et al. Greener approaches toward sustainable batteries. Nat Commun. 2022;13(1):3133.

Third-party report: The cobalt supply chain and its impact on the global battery industry. Nat Sustain. 2020;3(5):377-384.

Su DS, Schlögl R. Nanostructured carbon and carbon nanocomposites for electrochemical energy storage applications. ChemSusChem. 2010;3(2):136-168. DOI: https://doi.org/10.1002/cssc.200900182

Guo W, Liu L, Yu Y, et al. Hierarchical structure and functional materials for flexible and wearable energy storage devices. Small Methods. 2019;3(10):1900263.

Downloads

Published

05-08-2025

Issue

Section

Research Articles

How to Cite

[1]
Sujata Saini and Shabnum Shafi, “Frontiers in Advanced Materials for Energy Harvesting and Storage in Sustainable Technologies”, Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, vol. 11, no. 4, pp. 291–301, Aug. 2025, doi: 10.32628/CSEIT25111670.