Multi-Agent Locally Trained Progressive Instance Selected Assisted Federated Learning Architecture for Intrusion Detection in Industrial-IoT

Authors

  • Divyashree R Department of Computer Science, Karnataka State Open University, Mysore, Karnataka, India Author
  • Dr. Sumati Ramakrishna Gowda Department of Computer Science, Karnataka State Open University, Mysore, Karnataka, India Author

DOI:

https://doi.org/10.32628/CSEIT24106190

Keywords:

Industrial-IoT, Federated learning model, Multi-type network intrusion detection system, Intrusion Detection

Abstract

In this work the focus is made on designing and developing a robust federated learning model (FLM) and architecture for multi-type network intrusion detection system (MT-NIDS) for IIoT applications. Unlike traditional intrusion detection systems, where the key focus is made on detecting and classifying single type of intrusion or attack condition, this research targets to perform multi-type network intrusion detection. This as a result can contribute a fit-to-all NIDS solution for IIoT environment.

Downloads

Download data is not yet available.

References

H.Wang, J. Gu, and S.Wang, ``An effective intrusion detection framework based on SVM with feature augmentation,'' Knowl.-Based Syst., vol. 136, pp. 130_139, Nov. 2017. DOI: https://doi.org/10.1016/j.knosys.2017.09.014

F. Kuang,W. Xu, and S. Zhang, ``A novel hybrid KPCA and SVM with GA model for intrusion detection,'' Appl. Soft Comput., vol. 18, pp. 178_184, May 2014. DOI: https://doi.org/10.1016/j.asoc.2014.01.028

A. A. Aburomman and M. B. I. Reaz, ``A novel SVM-kNN-PSO ensemble method for intrusion detection system,'' Appl. Soft Comput., vol. 38, pp. 360_372, Jan. 2016. DOI: https://doi.org/10.1016/j.asoc.2015.10.011

M. R. G. Raman, N. Somu, K. Kirthivasan, R. Liscano, and V. S. S. Sriram,”An ef_cient intrusion detection system based on hypergraphGenetic algorithm for parameter optimization and feature selection in support vector machine,'' Knowl.-Based Syst., vol. 134, pp. 1_12, Oct. 2017. DOI: https://doi.org/10.1016/j.knosys.2017.07.005

S. Teng, N.Wu, H. Zhu, L. Teng, andW. Zhang, ``SVM-DT-based adaptive and collaborative intrusion detection,'' IEEE/CAA J. Automatica Sinica, vol. 5, no. 1, pp. 108-18, Jan. 2018

N. Farnaaz and M. A. Jabbar, ``Random Forest modeling for network intrusion detection system,'' Proc. Comp. Sci., vol. 89, pp. 213_217. 2016. DOI: https://doi.org/10.1016/j.procs.2016.06.047

R. M. Elbasiony, E. A. Sallam, T. E. Eltobely, and M. M. Fahmy, ``A hybridnetwork intrusion detection framework based on random forests and weighted k-means,'' Ain Shams Eng. J., vol. 4, no. 4, pp. 753_762, 2013. DOI: https://doi.org/10.1016/j.asej.2013.01.003

E. Kabir, J. Hu, H. Wang, and G. Zhuo, ``A novel statistical technique for intrusion detection systems,'' Future Gener. Comput. Syst., vol. 79, pp. 303_318, Feb. 2018. DOI: https://doi.org/10.1016/j.future.2017.01.029

P. Winter, E. Hermann, and M. Zeilinger, ``Inductive intrusion detection in _ow-based network data using one-class support vector machines,'' in Proc. 4th IFIP Int. Conf. New Technol., Mobility Secur., Feb. 2011, pp. 1_5. DOI: https://doi.org/10.1109/NTMS.2011.5720582

C.Wagner, J. Franáois, R. State, and T. Engel, ``Machine learning approach for IP-_ow record anomaly detection,'' Lecture Notes Comput. Sci., vol. 6640, no. 1, pp. 28_39, 2011. DOI: https://doi.org/10.1007/978-3-642-20757-0_3

M. F. Umer, M. Sher, and Y. Bi, ``A two-stage _ow-based intrusion detection model for next-generation networks,'' PLoS ONE, vol. 13, no. 1, Jan. 2018, Art. no. e0180945. DOI: https://doi.org/10.1371/journal.pone.0180945

L. Li, Y. Yu, S. Bai, Y. Hou, and X. Chen, ``An effective two-step intrusiondetection approach based on binary classi_cation and _-NN,'' IEEE Access,vol. 6, pp. 12060_12073, 2018. DOI: https://doi.org/10.1109/ACCESS.2017.2787719

P. Tao, Z. Sun, and Z. Sun, ``An improved intrusion detection algorithm based on GA and SVM,'' IEEE Access, vol. 6, pp. 13624_13631, 2018. DOI: https://doi.org/10.1109/ACCESS.2018.2810198

L. khalvati, M. Keshtgary and N. Rikhtegar, ``Intrusion detection based ona novel hybrid learning approach,'' J. AI Data Mining, vol. 6, no. 1, pp. 157_162, 2018.

M. A. Abdullah, B. M. Alsolami, H. M. Alyahya, and M. H. Alotibi, ``Intrusion detection of DoS attacks in WSNs using classi_cation techniuqes,'' J. Fundam. Appl. Sci., vol. 10, no. 4S, pp. 298_303, 2018.

S. Teng, N.Wu, H. Zhu, L. Teng, andW. Zhang, ``SVM-DT-based adaptive and collaborative intrusion detection,'' IEEE/CAA J. Autom. Sinica, vol. 5,no. 1, pp. 108_118, Jan. 2018. DOI: https://doi.org/10.1109/JAS.2017.7510730

Y. Li, J.-L. Wang, Z.-H. Tian, T.-B. Lu, and C. Young, ``Building lightweight intrusion detection system using wrapper-based feature selection mechanisms,'' Comput. Secur., vol. 28, no. 6, pp. 466_475, 2009. DOI: https://doi.org/10.1016/j.cose.2009.01.001

A. K. Shrivas and A. K. Dewangan, ``An ensemble model for classi_cation of attacks with feature selection based on KDD99 and NSL-KDD data set,'' Int. J. Comput. Appl., vol. 99, no. 3, pp. 8_13, 2014. DOI: https://doi.org/10.5120/17447-5392

M. A. Ambusaidi, X. He, P. Nanda, and Z. Tan, ``Building an intrusion detection system using a _lter-based feature selection algorithm,'' IEEE Trans. Comput., vol. 65, no. 10, pp. 2986_2998, Oct. 2016. DOI: https://doi.org/10.1109/TC.2016.2519914

M. Al-Qatf, Y. Lasheng, M. Al-Habib, and K. Al-Sabahi, ``Deep learning approach combining sparse autoencoder with SVM for network intrusion detection,'' IEEE Access, vol. 6, pp. 52843_52856, 2018. DOI: https://doi.org/10.1109/ACCESS.2018.2869577

Y.J. Lee, Y.-R. Yeh, and Y.-C.-F. Wang, ``Anomaly detection via online oversampling principal component analysis,'' IEEE Trans. Knowl. Data Eng., vol. 25, no. 7, pp. 1460_1470, Jul. 2013. DOI: https://doi.org/10.1109/TKDE.2012.99

A. N. Jaber, M. F. Zolkipli, H. A. Shakir, and M. R. Jassim, ``Host based intrusion detection and prevention model against DDoS attack in cloud computing,'' in Proc. Int. Conf. P2P Parallel, Grid, Cloud Internet Comput.Cham, Switzerland: Springer, 2017. DOI: https://doi.org/10.1007/978-3-319-69835-9_23

M. Latah and L. Toker, ``An ef_cient _ow-based multi-level hybrid intrusion detection system for software-defined networks,'' 2018, arXiv:1806.03875. [Online . Available: https://arxiv.org/abs/1806.03875

Y.Wahba, E. ElSalamouny, and G. ElTaweel, ``Improving the performance of multi-class intrusion detection systems using feature reduction,'' 2015, arXiv:1507.06692. [Online . Available: https://arxiv.org/abs/1507.06692

X. Gao, C. Shan, C. Hu, Z. Niu, and Z. Liu, ``An adaptive ensemble machine learning model for intrusion detection,'' IEEE Access, vol. 7, pp. 82512_82521, 2019. DOI: https://doi.org/10.1109/ACCESS.2019.2923640

R. Beghdad, ``Critical study of neural networks in detecting intrusions,''Comput. Secur., vol. 27, nos. 5_6, pp. 168_175, Oct. 2008. DOI: https://doi.org/10.1016/j.cose.2008.06.001

S. Song, L. Ling, and C. N. Manikopoulo, ``Flow-based statistical aggregation schemes for network anomaly detection,'' in Proc. IEEE Int. Conf. Netw., Sens. Control, Dec. 2006, pp. 786_791.

Q. A. Tran, F. Jiang, and J. Hu, ``Areal-time netFlow-based intrusion detection system with improved BBNN and high-frequency _eld programmable gate arrays,'' in Proc. IEEE 11th Int. Conf. Trust Secur. Privacy Comput. Commun., Jun. 2012, pp. 201_208. DOI: https://doi.org/10.1109/TrustCom.2012.51

Downloads

Published

13-11-2024

Issue

Section

Research Articles

Similar Articles

1-10 of 408

You may also start an advanced similarity search for this article.