Anomaly Detection Industrial Items
DOI:
https://doi.org/10.32628/CSEIT2410268Keywords:
Object Detection, Deep Learning, Object Tracking, Matching and Recognition, Simple Real Time TrackerAbstract
Anomaly detection is one of the machines learning powered approach which identifies the various elements and objects from a big set of the data. The machine learning powered technique checks multiple objects with the help of differentiating properties and detects the objects which are dissimilar to another dataset. Anomaly detection has number of successful applications from security, medical, industrial and virtually all of the tasks which human may fail while identifying the differentiating properties. Machinery elements anomaly detection has been presented which identifies the differentiating objects of the four hundred images. Number of experiments were performed to detect the anomaly among the given 400 images. The training model has used bidirectional LSTM which gets a feature vector of twelve features, selected, and extracted with already defined algorithm. The dataset has been labelled manually and features were stored. While testing of the images, the study achieved 98% of the accuracy while detecting anomaly of the industrial elements. The system can detect anomalies in the presence of the varying colour and other properties. The accuracy can be increased by adding more images to the database and learning model more deeply. The study can be directed to various implementations including multiple learning implementations, applying on various other elements.
Downloads
References
V. Chandola, A. Banerjee, V. Kumar, Anomaly detection: A survey, ACM Computing Surveys (CSUR) 41 (2009) 1–58. DOI: https://doi.org/10.1145/1541880.1541882
Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to document recognition, Proceedings of the IEEE 86 (1998) 2278–2324. DOI: https://doi.org/10.1109/5.726791
A. Graves, Generating sequences with recurrent neural networks, arXiv preprint arXiv:1308.0850, 2013.
G.E. Hinton, A. Krizhevsky, S.D. Wang, Transforming auto-encoders, in: International conference on artificial neural networks, Springer, 2011, pp. 44–51.. DOI: https://doi.org/10.1007/978-3-642-21735-7_6
I.J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, Generative adversarial nets, in: Proceedings of the 27th International Conference on Neural Information Processing Systems- Volume 2, MIT Press, 2014, pp. 2672–2680.
K. Oksuz, B.C. Cam, S. Kalkan, E. Akbas, Imbalance problems in object detection: A review, IEEE Transactions on Pattern Analysis and Machine Intelligence (2020). DOI: https://doi.org/10.1109/TPAMI.2020.2981890
Xueyuan Duan, Yu Fu, Kun Wang, Network traffic anomaly detection method based on multi-scale residual classifier, Computer Communications, Volume 198, 2023,Pages 206-216, ISSN 0140-3664, https://doi.org/10.1016/j.comcom.2022.10.024. DOI: https://doi.org/10.1016/j.comcom.2022.10.024
Ruikang Liu, Weiming Liu, Mengfei Duan, Wei Xie, Yuan Dai, Xianzhe Liao, MemFormer: A memory based unified model for anomaly detection on metro railway tracks,Expert Systems with Applications,Volume 237, Part B,2024,121509,ISSN 0957-4174,https://doi.org/10.1016/j.eswa.2023.121509. DOI: https://doi.org/10.1016/j.eswa.2023.121509
Bekhzod Alisher ugli Olimov, Kalyana C. Veluvolu, Anand Paul, Jeonghong Kim, UzADL: Anomaly detection and localization using graph Laplacian matrix-based unsupervised learning method,Computers & Industrial Engineering,Volume 171,2022,108313,ISSN 0360-8352,https://doi.org/10.1016/j.cie.2022.108313. DOI: https://doi.org/10.1016/j.cie.2022.108313
T.W. Cenggoro, Deep learning for imbalance data classification using class expert generative adversarial network, Procedia Computer Science 135 (2018) 60–67. DOI: https://doi.org/10.1016/j.procs.2018.08.150
S. Bulusu, B. Kailkhura, B. Li, P.K. Varshney, D. Song, Anomalous example detection in deep learning: A survey, IEEE Access 8 (2020) 132330–132347. DOI: https://doi.org/10.1109/ACCESS.2020.3010274
R. Chalapathy, S. Chawla, Deep learning for anomaly detection: A survey, arXiv preprint arXiv:1901.03407, 2019. DOI: https://doi.org/10.1145/3394486.3406704
G. Pang, C. Shen, L. Cao, A.V.D. Hengel, Deep learning for anomaly detection: A review, ACM Computing Surveys (CSUR) 54 (2021) 1–38. DOI: https://doi.org/10.1145/3439950
F. Di Mattia, P. Galeone, M. De Simoni, E. Ghelfi, A survey on gans for anomaly detection, 2019, arXiv preprint arXiv:1906.11632.
V. Chandola, A. Banerjee, V. Kumar, Outlier detection: A survey, ACM Computing Surveys (CSUR) 14 (2007) 15.
E. Zisselman, A. Tamar, Deep residual flow for out of distribution detection, in, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 13994–14003. DOI: https://doi.org/10.1109/CVPR42600.2020.01401
M.A. Pimentel, D.A. Clifton, L. Clifton, L. Tarassenko, A review of novelty detection, Signal Processing 99 (2014) 215–249. DOI: https://doi.org/10.1016/j.sigpro.2013.12.026
A. Ayadi, O. Ghorbel, A.M. Obeid, M. Abid, Outlier detection approaches for wireless sensor networks: Asurvey,ComputerNetworks129(2017)319–333. DOI: https://doi.org/10.1016/j.comnet.2017.10.007
C.C. Aggarwal, An Introduction to Outlier Analysis, Springer, 2017, pp. 1–34. DOI: https://doi.org/10.1007/978-3-319-54765-7_1
M. Goldstein, S. Uchida, A comparative evaluation of unsupervised anomaly detection algorithms for multivariate data, PloS One 11 (2016) e0152173. DOI: https://doi.org/10.1371/journal.pone.0152173
L. Ruff, J.R. Kauffmann, R.A. Vandermeulen, G. Montavon, W. Samek, M. Kloft, T.G. Dietterich, K.-R. Müller, A unifying review of deep and shallow anomaly detection, Proceedings of the IEEE (2021). DOI: https://doi.org/10.1109/JPROC.2021.3052449
A. Taha, A.S. Hadi, Anomaly detection methods for categorical data: A review, ACM Computing Surveys (CSUR) 52 (2019) 1–35. DOI: https://doi.org/10.1145/3312739
H. Wang, M.J. Bah, M. Hammad, Progress in outlier detection techniques: A survey, IEEE Access 7 (2019) 107964–108000. DOI: https://doi.org/10.1109/ACCESS.2019.2932769
R. Foorthuis, On the nature and types of anomalies: A review of deviations in data, 2020, arXiv preprint arXiv:2007.15634.
A. Boukerche, L. Zheng, O. Alfandi, Outlier detection: Methods, models, and classification, ACM Computing Surveys (CSUR) 53 (2020) 1–37. DOI: https://doi.org/10.1145/3381028
D. Miljkovic´, Review of novelty detection methods, in: The 33rd International Convention MIPRO, IEEE, 2010, pp. 593–598..
A. Carreño, I. Inza, J.A. Lozano, Analyzing rare event, anomaly, novelty and outlier detection terms under the supervised classification framework, Artificial Intelligence Review 53 (2020) 3575–3594. DOI: https://doi.org/10.1007/s10462-019-09771-y
Downloads
Published
Issue
Section
License
Copyright (c) 2024 International Journal of Scientific Research in Computer Science, Engineering and Information Technology
This work is licensed under a Creative Commons Attribution 4.0 International License.