A Review on Fake News Detection using Deep Learning Methods

Authors

  • Jayshree Kathiriya Reserach Scholar, Department of Computer Engineering, Sigma University, Vadodara, Gujarat, India Author
  • Dr. Sheshang Degadwala Professor / HOD, Department of Computer Engineering, Sigma University, Vadodara, Gujarat, India Author

DOI:

https://doi.org/10.32628/CSEIT24103126

Keywords:

Fake News Detection, Deep Learning, Social Media Analysis, Ethical Considerations, Societal Implications, Misinformation, Information Integrity, Online Media Governance, Adversarial Attacks, Interpretability

Abstract

The proliferation of fake news in online media platforms poses a significant threat to the integrity of information dissemination and public discourse. In response, researchers have increasingly turned to deep learning techniques to develop effective solutions for detecting and mitigating the spread of fake news. This review paper provides a comprehensive overview of recent advances in fake news detection using deep learning methodologies. We survey the literature on various deep learning architectures and approaches employed for fake news detection, including supervised, semi-supervised, and unsupervised learning methods. We discuss the challenges associated with data preprocessing, feature extraction, and model evaluation, and examine the ethical considerations and societal implications of deploying deep learning models for fake news detection. Furthermore, we identify emerging trends and future research directions in the field, with a focus on addressing the evolving nature of fake news and enhancing the robustness and interpretability of detection systems. This review contributes to the ongoing discourse on fake news detection and provides valuable insights for researchers, practitioners, and policymakers working in the domain of information integrity and online media governance.

Downloads

Download data is not yet available.

References

Ahmed Hashim Jawad Almarashy; Mohammad-Reza Feizi-Derakhshi; Pedram Salehpour “Enhancing Fake News Detection by Multi-Feature Classification” Published in: IEEE Access ( Volume: 9) Page(s): 156151 – 156170 Electronic ISSN: 2169-3536 DOI: 10.1109/ACCESS.2021.3129329

Mehedi Tajrian; Azizur Rahman; Muhammad Ashad Kabir; Md. Rafiqul Islam “A Review of Methodologies for Fake News Analysis” Published in: IEEE Access ( Volume: 11) Page(s): 73879 – 73893 Electronic ISSN: 2169-3536 DOI: 10.1109/ACCESS.2023.3294989 DOI: https://doi.org/10.1109/ACCESS.2023.3294989

M. F. Mridha; Ashfia Jannat Keya; Md. Abdul Hamid; Muhammad Mostafa Monowar “A Comprehensive Review on Fake News Detection With Deep Learning” Published in: IEEE Access ( Volume: 9)Page(s): 156151 – 156170 Electronic ISSN: 2169-3536 DOI: 10.1109/ACCESS.2021.3129329 DOI: https://doi.org/10.1109/ACCESS.2021.3129329

Ehtesham Hashmi; Sule Yildirim Yayilgan; Muhammad Mudassar Yamin; Subhan Ali “Advancing Fake News Detection: Hybrid Deep Learning With FastText and Explainable AI” Published in: IEEE Access ( Volume: 12) Page(s): 44462 – 44480 Electronic ISSN: 2169-3536 DOI: 10.1109/ACCESS.2024.3381038 DOI: https://doi.org/10.1109/ACCESS.2024.3381038

Gülsüm Kayabaşi Koru; Çelebı Uluyol “Detection of Turkish Fake News From Tweets With BERT Models” Published in: IEEE Access ( Volume: 12) Page(s): 14918 – 14931 Electronic ISSN: 2169-3536 DOI: https://doi.org/10.1109/ACCESS.2024.3354165

Matthew Carter; Michail Tsikerdekis; Sherali Zeadally “Approaches for Fake Content Detection: Strengths and Weaknesses to Adversarial Attacks” Published in: IEEE Internet Computing ( Volume: 25, Issue: 2, 01 March-April 2021) Page(s): 73 – 83 DOI: https://doi.org/10.1109/MIC.2020.3032323

Manideep Narra; Muhammad Umer; Saima Sadiq; Ala’ Abdulmajid Eshmawi; Hanen Karamti; “Selective Feature Sets Based Fake News Detection for COVID-19 to Manage Infodemic” Published in: IEEE Access ( Volume: 10) Page(s): 98724 – 98736 Electronic ISSN: 2169-3536 DOI: https://doi.org/10.1109/ACCESS.2022.3206963

Wang Jian; Jian Ping Li; Muhammad Atif Akbar; Amin Ul Haq; Shakir Khan; Reemiah Mune “SA-Bi-LSTM: Self Attention With Bi-Directional LSTM-Based Intelligent Model for Accurate Fake News Detection to Ensured Information Integrity on Social Media Platforms” Published in: IEEE Access ( Volume: 12) Page(s): 48436 – 48452 Electronic ISSN: 2169-3536 DOI: https://doi.org/10.1109/ACCESS.2024.3382832

Tien Huu Do; Marc Berneman; Jasabanta Patro; Giannis Bekoulis; Nikos Deligiannis “Context-Aware Deep Markov Random Fields for Fake News Detection” Published in: IEEE Access ( Volume: 9) Page(s): 130042 – 130054 Electronic ISSN: 2169-3536 DOI: https://doi.org/10.1109/ACCESS.2021.3113877

Hager Saleh; Abdullah Alharbi; Saeed Hamood Alsamhi “OPCNN-FAKE: Optimized Convolutional Neural Network for Fake News Detection” Published in: IEEE Access ( Volume: 9) Page(s): 129471 – 129489 Electronic ISSN: 2169-3536 DOI: https://doi.org/10.1109/ACCESS.2021.3112806

Muhammad Umer; Zainab Imtiaz; Saleem Ullah; Arif Mehmood; Gyu Sang Choi; Byung “Fake News Stance Detection Using Deep Learning Architecture (CNN-LSTM)” Published in: IEEE Access ( Volume: 8) Page(s): 156695 – 156706 Electronic ISSN: 2169-3536 DOI: https://doi.org/10.1109/ACCESS.2020.3019735

S. Degadwala, D. Vyas, and M. Soni, “Unveiling Cholera Patterns through Machine Learning Regression for Precise Forecasting,” Proceedings - 2024 5th International Conference on Mobile Computing and Sustainable Informatics, ICMCSI 2024, pp. 39–44, 2024, doi: 10.1109/ICMCSI61536.2024.00012. DOI: https://doi.org/10.1109/ICMCSI61536.2024.00012

D. D. Pandya, A. Jadeja, S. Degadwala, and D. Vyas, “Diagnostic Criteria for Depression based on Both Static and Dynamic Visual Features,” in IDCIoT 2023 - International Conference on Intelligent Data Communication Technologies and Internet of Things, Proceedings, 2023, pp. 635–639. doi: 10.1109/IDCIoT56793.2023.10053450. DOI: https://doi.org/10.1109/IDCIoT56793.2023.10053450

D. Rathod, K. Patel, A. J. Goswami, S. Degadwala, and D. Vyas, “Exploring Drug Sentiment Analysis with Machine Learning Techniques,” in 6th International Conference on Inventive Computation Technologies, ICICT 2023 - Proceedings, 2023, pp. 9–12. doi: 10.1109/ICICT57646.2023.10134055. DOI: https://doi.org/10.1109/ICICT57646.2023.10134055

V. Desai, S. Degadwala, and D. Vyas, “Multi-Categories Vehicle Detection For Urban Traffic Management,” in Proceedings of the 2023 2nd International Conference on Electronics and Renewable Systems, ICEARS 2023, 2023, pp. 1486–1490. doi: 10.1109/ICEARS56392.2023.10085376. DOI: https://doi.org/10.1109/ICEARS56392.2023.10085376

C. H. Patel, D. Undaviya, H. Dave, S. Degadwala, and D. Vyas, “EfficientNetB0 for Brain Stroke Classification on Computed Tomography Scan,” in Proceedings of the 2nd International Conference on Applied Artificial Intelligence and Computing, ICAAIC 2023, 2023, pp. 713–718. doi: 10.1109/ICAAIC56838.2023.10141195. DOI: https://doi.org/10.1109/ICAAIC56838.2023.10141195

V. N. Dasavandi Krishnamurthy, S. Degadwala, and D. Vyas, “Forecasting Future Sea Level Rise: A Data-driven Approach using Climate Analysis,” Proceedings of the 2nd International Conference on Edge Computing and Applications, ICECAA 2023, pp. 646–651, 2023, doi: 10.1109/ICECAA58104.2023.10212399. DOI: https://doi.org/10.1109/ICECAA58104.2023.10212399

F. Patel, S. Mewada, S. Degadwala, and D. Vyas, “Exploring Transfer Learning Models for Multi-Class Classification of Infected Date Palm Leaves,” International Conference on Self Sustainable Artificial Intelligence Systems, ICSSAS 2023 - Proceedings, pp. 307–312, 2023, doi: 10.1109/ICSSAS57918.2023.10331746. DOI: https://doi.org/10.1109/ICSSAS57918.2023.10331746

S. Degadwala, S. S. Dave, D. Vyas, N. A. Patel, V. I. Gohil, and K. Rana, “Enhancing Mesothelioma Cancer Diagnosis through Ensemble Learning Techniques,” 3rd International Conference on Innovative Mechanisms for Industry Applications, ICIMIA 2023 - Proceedings, pp. 628–632, 2023, doi: 10.1109/ICIMIA60377.2023.10425887. DOI: https://doi.org/10.1109/ICIMIA60377.2023.10425887

D. D. Pandya, A. K. Patel, J. M. Purohit, M. N. Bhuptani, S. Degadwala, and D. Vyas, “Forecasting Number of Indian Startups using Supervised Learning Regression Models,” in 6th International Conference on Inventive Computation Technologies, ICICT 2023 - Proceedings, 2023, pp. 948–952. doi: 10.1109/ICICT57646.2023.10134480. DOI: https://doi.org/10.1109/ICICT57646.2023.10134480

S. Degadwala, D. Vyas, S. Panesar, D. Ebenezer, D. D. Pandya, and V. D. Shah, “Revolutionizing Hops Plant Disease Classification: Harnessing the Power of Transfer Learning,” International Conference on Sustainable Communication Networks and Application, ICSCNA 2023 - Proceedings, pp. 1706–1711, 2023, doi: 10.1109/ICSCNA58489.2023.10370692. DOI: https://doi.org/10.1109/ICSCNA58489.2023.10370692

S. Mewada, F. Patel, S. Degadwala, and D. Vyas, “Enhancing Raga Identification in Indian Classical Music with FCN-based Models,” International Conference on Sustainable Communication Networks and Application, ICSCNA 2023 - Proceedings, pp. 980–985, 2023, doi: 10.1109/ICSCNA58489.2023.10370046. DOI: https://doi.org/10.1109/ICSCNA58489.2023.10370046

F. Ahamad, D. K. Lobiyal, S. Degadwala, and D. Vyas, “Inspecting and Finding Faults in Railway Tracks using Wireless Sensor Networks,” in 6th International Conference on Inventive Computation Technologies, ICICT 2023 - Proceedings, 2023, pp. 1241–1245. doi: 10.1109/ICICT57646.2023.10134164. DOI: https://doi.org/10.1109/ICICT57646.2023.10134164

S. Degadwala, D. Vyas, S. Upadhyay, R. Upadhyay, and H. S. Patel, “Determine the Degree of Malignancy in Breast Cancer using Machine Learning,” 7th International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud), I-SMAC 2023 - Proceedings, pp. 483–487, 2023, doi: 10.1109/I-SMAC58438.2023.10290430. DOI: https://doi.org/10.1109/I-SMAC58438.2023.10290430

S. Degadwala, D. Vyas, A. Jadeja, and D. D. Pandya, “Enhancing Alzheimer Stage Classification of MRI Images through Transfer Learning,” in Proceedings of the 5th International Conference on Inventive Research in Computing Applications, ICIRCA 2023, 2023, pp. 733–737. doi: 10.1109/ICIRCA57980.2023.10220651. DOI: https://doi.org/10.1109/ICIRCA57980.2023.10220651

S. Degadwala, D. Vyas, A. Jadeja, and D. D. Pandya, “Empowering Maxillofacial Diagnosis Through Transfer Learning Models,” in Proceedings of the 5th International Conference on Inventive Research in Computing Applications, ICIRCA 2023, 2023, pp. 728–732. doi: 10.1109/ICIRCA57980.2023.10220830. DOI: https://doi.org/10.1109/ICIRCA57980.2023.10220830

J. N. Mehta, H. Lakhani, H. Dave, S. Degadwala, and D. Vyas, “EEG Brainwave Data Classification of a Confused Student Using Moving Average Feature,” Proceedings - 2023 3rd International Conference on Pervasive Computing and Social Networking, ICPCSN 2023, pp. 1461–1466, 2023, doi: 10.1109/ICPCSN58827.2023.00243. DOI: https://doi.org/10.1109/ICPCSN58827.2023.00243

S. Degadwala, R. Upadhyay, S. Upadhyay, M. Soni, D. J. Parikh, and D. Vyas, “DeepTread: Exploring Transfer Learning in Tyre Quality Classification,” International Conference on Sustainable Communication Networks and Application, ICSCNA 2023 - Proceedings, pp. 1448–1453, 2023, doi: 10.1109/ICSCNA58489.2023.10370168. DOI: https://doi.org/10.1109/ICSCNA58489.2023.10370168

S. Degadwala, D. Vyas, S. Trivedi, H. Dave, P. K. Nilaykumar, and P. Dalal, “Revolutionizing Prostate Cancer Diagnosis: Harnessing the Potential of Transfer Learning for MRI-Based Classification,” Proceedings of the 4th International Conference on Smart Electronics and Communication, ICOSEC 2023, pp. 938–943, 2023, doi: 10.1109/ICOSEC58147.2023.10275879. DOI: https://doi.org/10.1109/ICOSEC58147.2023.10275879

S. Degadwala, R. Upadhyay, S. Upadhyay, S. S. Dave, D. Mahida, and D. Vyas, “Enhancing Fleet Management with ESP8266-based IoT Sensors for Weight and Location Tracking,” 3rd International Conference on Innovative Mechanisms for Industry Applications, ICIMIA 2023 - Proceedings, pp. 13–17, 2023, doi: 10.1109/ICIMIA60377.2023.10425949. DOI: https://doi.org/10.1109/ICIMIA60377.2023.10425949

S. Degadwala, D. Vyas, A. R. Raval, and M. Soni, “Crime Pattern Analysis and Prediction Using Regression Models,” International Conference on Self Sustainable Artificial Intelligence Systems, ICSSAS 2023 - Proceedings, pp. 771–776, 2023, doi: 10.1109/ICSSAS57918.2023.10331747. DOI: https://doi.org/10.1109/ICSSAS57918.2023.10331747

S. Mewada, F. Patel, S. Degadwala, and D. Vyas, “Improved CAD Classification with Ensemble Classifier and Attribute Elimination,” in Proceedings - 2023 3rd International Conference on Ubiquitous Computing and Intelligent Information Systems, ICUIS 2023, 2023, pp. 238–243. doi: 10.1109/ICUIS60567.2023.00048. DOI: https://doi.org/10.1109/ICUIS60567.2023.00048

D. D. Pandya, S. K. Patel, A. H. Qureshi, A. J. Goswami, S. Degadwala, and D. Vyas, “Multi-Class Classification of Vector Borne Diseases using Convolution Neural Network,” in Proceedings of the 2nd International Conference on Applied Artificial Intelligence and Computing, ICAAIC 2023, 2023, pp. 1638–1645. doi: 10.1109/ICAAIC56838.2023.10140654. DOI: https://doi.org/10.1109/ICAAIC56838.2023.10140654

D. D. Pandya, P. A. Patel, H. H. Patel, A. J. Goswami, S. Degadwala, and D. Vyas, “Unveiling the Power of Collective Intelligence: A Voting-based Approach for Dementia Classification,” 7th International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud), I-SMAC 2023 - Proceedings, pp. 478–482, 2023, doi: 10.1109/I-SMAC58438.2023.10290165. DOI: https://doi.org/10.1109/I-SMAC58438.2023.10290165

S. Degadwala, D. Vyas, A. Jadeja, and D. D. Pandya, “Enhancing Prostate Cancer Diagnosis: Leveraging XGBoost for Accurate Classification,” Proceedings of the 2023 2nd International Conference on Augmented Intelligence and Sustainable Systems, ICAISS 2023, pp. 1776–1781, 2023, doi: 10.1109/ICAISS58487.2023.10250511. DOI: https://doi.org/10.1109/ICAISS58487.2023.10250511

S. Degadwala, D. Vyas, D. D. Pandya, and H. Dave, “Multi-Class Pneumonia Classification Using Transfer Deep Learning Methods,” in Proceedings of the 3rd International Conference on Artificial Intelligence and Smart Energy, ICAIS 2023, 2023, pp. 559–563. doi: 10.1109/ICAIS56108.2023.10073807. DOI: https://doi.org/10.1109/ICAIS56108.2023.10073807

D. D. Pandya, S. Degadwala, D. Vyas, S. V. Sureshbhai, L. Ainapurapu, and N. S. Bhavsar, “Advancing Erythemato-Squamous Disease Classification with Multi-class Machine Learning,” 7th International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud), I-SMAC 2023 - Proceedings, pp. 542–547, 2023, doi: 10.1109/I-SMAC58438.2023.10290599. DOI: https://doi.org/10.1109/I-SMAC58438.2023.10290599

D. D. Pandya, S. Degadwala, D. Vyas, V. N. Solanki, S. V. Sureshbhai, and H. G. Patel, “Advancements in Multiple Sclerosis Disease Classification Through Machine Learning,” in Proceedings - 2023 3rd International Conference on Ubiquitous Computing and Intelligent Information Systems, ICUIS 2023, 2023, pp. 64–69. doi: 10.1109/ICUIS60567.2023.00019. DOI: https://doi.org/10.1109/ICUIS60567.2023.00019

A. Patel, S. Degadwala, and D. Vyas, “Enhancing Traffic Management with YOLOv5-Based Ambulance Tracking System,” Canadian Conference on Electrical and Computer Engineering, vol. 2023-September, pp. 528–532, 2023, doi: 10.1109/CCECE58730.2023.10288751. DOI: https://doi.org/10.1109/CCECE58730.2023.10288751

F. Patel, S. Mewada, S. Degadwala, and D. Vyas, “Recognition of Pistachio Species with Transfer Learning Models,” International Conference on Self Sustainable Artificial Intelligence Systems, ICSSAS 2023 - Proceedings, pp. 250–255, 2023, doi: 10.1109/ICSSAS57918.2023.10331907. DOI: https://doi.org/10.1109/ICSSAS57918.2023.10331907

S. Degadwala, D. Vyas, K. N. Patel, M. Soni, P. Parkash Singh, and R. Maranan, “Optimizing Hindi Paragraph Summarization through PageRank Method,” in Proceedings of the 2nd International Conference on Edge Computing and Applications, ICECAA 2023, 2023, pp. 504–509. doi: 10.1109/ICECAA58104.2023.10212107. DOI: https://doi.org/10.1109/ICECAA58104.2023.10212107

H. Lakhani, D. Undaviya, H. Dave, S. Degadwala, and D. Vyas, “PET-MRI Sequence Fusion using Convolution Neural Network,” in 6th International Conference on Inventive Computation Technologies, ICICT 2023 - Proceedings, 2023, pp. 317–321. doi: 10.1109/ICICT57646.2023.10134462. DOI: https://doi.org/10.1109/ICICT57646.2023.10134462

S. Degadwala, D. Vyas, P. Mitra, S. S. E. Roja, and S. K. Mandal, “Methods of Transfer Learning for Multiclass Hair Disease Categorization,” in 2nd International Conference on Automation, Computing and Renewable Systems, ICACRS 2023 - Proceedings, Dec. 2023, pp. 612–616. doi: 10.1109/ICACRS58579.2023.10404492. DOI: https://doi.org/10.1109/ICACRS58579.2023.10404492

S. Degadwala, D. Vyas, A. Kothari, and U. Khunt, “Cancer Death Cases Forecasting using Supervised Machine Learning,” in 2023 4th International Conference on Electronics and Sustainable Communication Systems, ICESC 2023 - Proceedings, 2023, pp. 903–907. doi: 10.1109/ICESC57686.2023.10193685. DOI: https://doi.org/10.1109/ICESC57686.2023.10193685

D. D. Pandya, G. Amarawat, A. Jadeja, S. Degadwala, and D. Vyas, “Analysis and Prediction of Location based Criminal Behaviors Through Machine Learning,” in International Conference on Edge Computing and Applications, ICECAA 2022 - Proceedings, 2022, pp. 1324–1332. doi: 10.1109/ICECAA55415.2022.9936498. DOI: https://doi.org/10.1109/ICECAA55415.2022.9936498

J. Mahale, S. Degadwala, and D. Vyas, “Crop Prediction System based on Soil and Weather Characteristics,” in 6th International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud), I-SMAC 2022 - Proceedings, 2022, pp. 340–345. doi: 10.1109/I-SMAC55078.2022.9987366. DOI: https://doi.org/10.1109/I-SMAC55078.2022.9987366

V. B. Gadhavi, S. Degadwala, and D. Vyas, “Transfer Learning Approach For Recognizing Natural Disasters Video,” in Proceedings of the 2nd International Conference on Artificial Intelligence and Smart Energy, ICAIS 2022, 2022, pp. 793–798. doi: 10.1109/ICAIS53314.2022.9743035. DOI: https://doi.org/10.1109/ICAIS53314.2022.9743035

V. K. Singh, S. Pandey, S. Degadwala, and D. Vyas, “DNA and KAMLA Approaches in Metamorphic Cryptography: An Evaluation,” in Proceedings of the 2nd International Conference on Artificial Intelligence and Smart Energy, ICAIS 2022, 2022, pp. 1173–1178. doi: 10.1109/ICAIS53314.2022.9742764. DOI: https://doi.org/10.1109/ICAIS53314.2022.9742764

D. D. Pandya, N. S. Gupta, A. Jadeja, R. D. Patel, S. Degadwala, and D. Vyas, “Bias Protected Attributes Data Balancing using Map Reduce,” in 6th International Conference on Electronics, Communication and Aerospace Technology, ICECA 2022 - Proceedings, 2022, pp. 1540–1544. doi: 10.1109/ICECA55336.2022.10009363. DOI: https://doi.org/10.1109/ICECA55336.2022.10009363

S. Dave, S. Degadwala, and D. Vyas, “DDoS Detection at Fog Layer in Internet of Things,” in International Conference on Edge Computing and Applications, ICECAA 2022 - Proceedings, 2022, pp. 610–617. doi: 10.1109/ICECAA55415.2022.9936524. DOI: https://doi.org/10.1109/ICECAA55415.2022.9936524

A. Patel, S. Degadwala, and D. Vyas, “Lung Respiratory Audio Prediction using Transfer Learning Models,” in 6th International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud), I-SMAC 2022 - Proceedings, 2022, pp. 1107–1114. doi: 10.1109/I-SMAC55078.2022.9986498. DOI: https://doi.org/10.1109/I-SMAC55078.2022.9986498

M. Shah, S. Degadwala, and D. Vyas, “Diet Recommendation System based on Different Machine Learners: A Review,” in Proceedings of the 2nd International Conference on Artificial Intelligence and Smart Energy, ICAIS 2022, 2022, pp. 290–295. doi: 10.1109/ICAIS53314.2022.9742919. DOI: https://doi.org/10.1109/ICAIS53314.2022.9742919

H. Gupta, D. Patel, A. Makade, K. Gupta, O. P. Vyas, and A. Puliafito, “Risk Prediction in the Life Insurance Industry Using Federated Learning Approach,” in MELECON 2022 - IEEE Mediterranean Electrotechnical Conference, Proceedings, 2022, pp. 948–953. doi: 10.1109/MELECON53508.2022.9842869. DOI: https://doi.org/10.1109/MELECON53508.2022.9842869

D. D. Pandya, A. Jadeja, S. Degadwala, and D. Vyas, “Ensemble Learning based Enzyme Family Classification using n-gram Feature,” in Proceedings - 2022 6th International Conference on Intelligent Computing and Control Systems, ICICCS 2022, 2022, pp. 1386–1392. doi: 10.1109/ICICCS53718.2022.9788292. DOI: https://doi.org/10.1109/ICICCS53718.2022.9788292

B. Trivedi, S. Degadwala, and D. Vyas, “Parallel Data Stream Anonymization Methods: A Review,” in Proceedings of the 2nd International Conference on Artificial Intelligence and Smart Energy, ICAIS 2022, 2022, pp. 887–891. doi: 10.1109/ICAIS53314.2022.9743084. DOI: https://doi.org/10.1109/ICAIS53314.2022.9743084

P. Bam, S. Degadwala, R. Upadhyay, and D. Vyas, “Spoken Language Recognization Based on Features and Classification Methods: A Review,” in Proceedings of the 2nd International Conference on Artificial Intelligence and Smart Energy, ICAIS 2022, 2022, pp. 868–873. doi: 10.1109/ICAIS53314.2022.9743090. DOI: https://doi.org/10.1109/ICAIS53314.2022.9743090

R. Baria, S. Degadwala, R. Upadhyay, and D. Vyas, “Theoretical Evaluation of Machine And Deep Learning For Detecting Fake News,” in Proceedings of the 2nd International Conference on Artificial Intelligence and Smart Energy, ICAIS 2022, 2022, pp. 325–329. doi: 10.1109/ICAIS53314.2022.9742864. DOI: https://doi.org/10.1109/ICAIS53314.2022.9742864

S. Degadwala, D. Vyas, U. Chakraborty, A. R. Dider, and H. Biswas, “Yolo-v4 Deep Learning Model for Medical Face Mask Detection,” in Proceedings - International Conference on Artificial Intelligence and Smart Systems, ICAIS 2021, 2021, pp. 209–213. doi: 10.1109/ICAIS50930.2021.9395857. DOI: https://doi.org/10.1109/ICAIS50930.2021.9395857

S. Degadwala, D. Vyas, H. Biswas, U. Chakraborty, and S. Saha, “Image Captioning Using Inception V3 Transfer Learning Model,” in Proceedings of the 6th International Conference on Communication and Electronics Systems, ICCES 2021, 2021, pp. 1103–1108. doi: 10.1109/ICCES51350.2021.9489111. DOI: https://doi.org/10.1109/ICCES51350.2021.9489111

S. Degadwala, D. Vyas, and H. Dave, “Classification of COVID-19 cases using Fine-Tune Convolution Neural Network (FT-CNN),” in Proceedings - International Conference on Artificial Intelligence and Smart Systems, ICAIS 2021, 2021, pp. 609–613. doi: 10.1109/ICAIS50930.2021.9395864. DOI: https://doi.org/10.1109/ICAIS50930.2021.9395864

S. Degadwala, D. Vyas, M. R. Hossain, A. R. DIder, M. N. Ali, and P. Kuri, “Location-Based Modelling and Analysis of Threats by Using Text Mining,” Proceedings of the 2nd International Conference on Electronics and Sustainable Communication Systems, ICESC 2021, pp. 1940–1944, 2021, doi: 10.1109/ICESC51422.2021.9532825. DOI: https://doi.org/10.1109/ICESC51422.2021.9532825

S. Patel, H. Patel, D. Vyas, and S. Degadwala, “Multi-Classifier Analysis of Leukemia Gene Expression from Curated Microarray Database (CuMiDa),” in Proceedings - 2nd International Conference on Smart Electronics and Communication, ICOSEC 2021, 2021, pp. 1174–1178. doi: 10.1109/ICOSEC51865.2021.9591854. DOI: https://doi.org/10.1109/ICOSEC51865.2021.9591854

H. Dave, V. Patel, J. N. Mehta, S. Degadwala, and D. Vyas, “Regional Kidney Stone Detection and Classification in Ultrasound Images,” in Proceedings of the 3rd International Conference on Inventive Research in Computing Applications, ICIRCA 2021, 2021, pp. 1108–1112. doi: 10.1109/ICIRCA51532.2021.9545031. DOI: https://doi.org/10.1109/ICIRCA51532.2021.9545031

S. Degadwala, U. Chakraborty, P. Kuri, H. Biswas, A. N. Ali, and D. Vyas, “Real-Time Panorama and Image Stitching with Surf-Sift Features,” in Proceedings of the 6th International Conference on Inventive Computation Technologies, ICICT 2021, 2021, pp. 1111–1115. doi: 10.1109/ICICT50816.2021.9358586. DOI: https://doi.org/10.1109/ICICT50816.2021.9358586

S. Degadwala, D. Vyas, U. Chakraborty, H. Biswas, and A. R. Dider, “Moving Object Inpainting using Deep Learning,” in Proceedings of the 5th International Conference on Trends in Electronics and Informatics, ICOEI 2021, 2021, pp. 1701–1704. doi: 10.1109/ICOEI51242.2021.9452894. DOI: https://doi.org/10.1109/ICOEI51242.2021.9452894

S. Degadwala, S. A. Musa, D. Vyas, and P. Mitra, “IoT Defence: An Internet Based Remote Area Monitoring and Control System,” in Proceedings of the 5th International Conference on Electronics, Communication and Aerospace Technology, ICECA 2021, 2021, pp. 487–491. doi: 10.1109/ICECA52323.2021.9676144. DOI: https://doi.org/10.1109/ICECA52323.2021.9676144

S. Degadwala, B. Patel, and D. Vyas, “A Review on Indian State/City Covid-19 Cases Outbreak Forecast utilizing Machine Learning Models,” in Proceedings of the 6th International Conference on Inventive Computation Technologies, ICICT 2021, 2021, pp. 1001–1005. doi: 10.1109/ICICT50816.2021.9358506. DOI: https://doi.org/10.1109/ICICT50816.2021.9358506

S. Degadwala, D. Vyas, H. Dave, and A. Mahajan, “Visual Social Distance Alert System Using Computer Vision Deep Learning,” in Proceedings of the 4th International Conference on Electronics, Communication and Aerospace Technology, ICECA 2020, 2020, pp. 1512–1516. doi: 10.1109/ICECA49313.2020.9297510. DOI: https://doi.org/10.1109/ICECA49313.2020.9297510

S. Degadwala, U. Chakraborty, S. Saha, H. Biswas, and D. Vyas, “EPNet: Efficient patch-based deep network for real-time semantic segmentation,” in Proceedings of the 3rd International Conference on Intelligent Sustainable Systems, ICISS 2020, 2020, pp. 611–615. doi: 10.1109/ICISS49785.2020.9316079. DOI: https://doi.org/10.1109/ICISS49785.2020.9316079

Downloads

Published

30-05-2024

Issue

Section

Research Articles

Similar Articles

1-10 of 500

You may also start an advanced similarity search for this article.