Detecting Anomalies in 5G Networks : A Machine Learning Approach for Robust Solutions
DOI:
https://doi.org/10.32628/CSEIT2410320Keywords:
Network Anomaly Detection, KNN, K-Prototype AlgorithmsAbstract
The telecommunications industry is advancing rapidly with the introduction of 5G technology, which promises enhanced broadband cellular networks. However, alongside the benefits come challenges, particularly in ensuring the security of these networks against cyber attacks. This paper focuses on Network Anomaly Detection (NAD) in 5G, aiming to detect and prevent abnormal behaviors within the network that could signify potential security threats. Various methods, including machine learning algorithms, are explored to achieve effective NAD. Specifically, the KNN and K-prototype algorithms are tested alongside an integrated approach, with the integrated method demonstrating superior performance.
Downloads
References
Mohiuddin A, Abdun NM, Jiankun H. Outlier detec- tion. In The State of the Art in Intrusion Prevention and Detection, Al-Sakib Khan Pathan (ed). Chapter: 1, Publisher: CRC Press: New York, USA, 2014. DOI: 10.1201/b16390-3 DOI: https://doi.org/10.1201/b16390-3
Bilge L, Balzarotti D, Robertson W, Kirda E, Kruegel C. Disclosure: detecting botnet command and control servers through large-scale NetFlow analysis. Proceed- ings of the 28th Annual Computer Security Applica- tions Conference. 2012, 129–138 DOI: https://doi.org/10.1145/2420950.2420969
Münz G, Li S, Carle G. Traffic anomaly detection using k-means clustering. In Proceedings of Performance, Reliability and Dependability Evaluation of Communi- cation Networks and Distributed Systems, 4 GI / ITG Workshop MMBnet. Hamburg, Germany. 2007
Hofstede R, Bartos V, Sperotto A, Pras A. Towards real-time intrusion detection for NetFlow and IPFIX. In: 9th International Conference on Network and Ser- vice Management, CNSM 2013, October 2013, Zürich, Switzerland. 2013, 14–18 DOI: https://doi.org/10.1109/CNSM.2013.6727841
Lazarevic A, Ertoz L, Kumar V, Ozgur A, Srivastava J. A comparative study of anomaly detection schemes in network intrusion detection. In Proceedings of the Third SIAM International Conference on Data Mining. 2003 DOI: https://doi.org/10.1137/1.9781611972733.3
Gogoi P, Bhattacharyya DK, Borah B, Kalita JK. A survey of outlier detection methods in network anom- aly identification. The Computer Journal 2011; 54(4):570–588. DOI: https://doi.org/10.1093/comjnl/bxr026
Chandola V, Banerjee A, Kumar V. Anomaly detec- tion: a survey. ACM Computing Surveys (CSUR) 2009; 41(3):15–58. DOI: https://doi.org/10.1145/1541880.1541882
Breunig MM, Kriegel HP, Ng RT, Sander J. LOF: identifying density-based local outliers. In Proceedings of the ACM SIGMOD International Conference on Management of Data, Dallas, TX. 2000, 93–104. DOI: https://doi.org/10.1145/335191.335388
Garšva E, Paulauskas N, Gražulevičius G, Gulbinovič L. Packet inter-arrival time distribution in academic computer network. Elektronika ir elektrotechnika. Elec- tronics and Electrical Engineering 2014; 20(3):87–90. DOI: https://doi.org/10.5755/j01.eee.20.3.6683
Downloads
Published
Issue
Section
License
Copyright (c) 2024 International Journal of Scientific Research in Computer Science, Engineering and Information Technology
This work is licensed under a Creative Commons Attribution 4.0 International License.