A Perception for Smart City Planning using Data Mining
DOI:
https://doi.org/10.32628/CSEIT24103211Keywords:
Smart City, Data Mining, Urban Planning, IoT, Big Data, Predictive Analytics, Resource ManagementAbstract
The rapid urbanization across the globe necessitates the development of smart cities to enhance the quality of life, optimize resources, and ensure sustainable growth. This research paper presents an analytical model for smart city planning using data mining techniques. By leveraging large datasets, cities can be planned and managed more efficiently. The model integrates various data mining techniques such as clustering, classification, regression, and anomaly detection to analyze and predict urban trends. This paper provides a comprehensive analysis of the model, supplemented by illustrative images to demonstrate its application.
Downloads
References
Batty, M., et al. "Smart cities of the future." The European Physical Journal Special Topics 214.1 (2012): 481-518. DOI: https://doi.org/10.1140/epjst/e2012-01703-3
D. D. Pandya, A. Jadeja, S. Degadwala, and D. Vyas, “Diagnostic Criteria for Depression based on Both Static and Dynamic Visual Features,” in IDCIoT 2023 - International Conference on Intelligent Data Communication Technologies and Internet of Things, Proceedings, 2023, pp. 635–639. doi: 10.1109/IDCIoT56793.2023.10053450. DOI: https://doi.org/10.1109/IDCIoT56793.2023.10053450
Hashem, I. A. T., et al. "The role of big data in smart city." International Journal of Information Management 36.5 (2016): 748-758. DOI: https://doi.org/10.1016/j.ijinfomgt.2016.05.002
S. Degadwala, S. S. Dave, D. Vyas, N. A. Patel, V. I. Gohil, and K. Rana, “Enhancing Mesothelioma Cancer Diagnosis through Ensemble Learning Techniques,” 3rd International Conference on Innovative Mechanisms for Industry Applications, ICIMIA 2023 - Proceedings, pp. 628–632, 2023, doi: 10.1109/ICIMIA60377.2023.10425887. DOI: https://doi.org/10.1109/ICIMIA60377.2023.10425887
Zanella, A., et al. "Internet of Things for Smart Cities." IEEE Internet of Things Journal 1.1 (2014): 22-32. DOI: https://doi.org/10.1109/JIOT.2014.2306328
D. D. Pandya, S. K. Patel, A. H. Qureshi, A. J. Goswami, S. Degadwala, and D. Vyas, “Multi-Class Classification of Vector Borne Diseases using Convolution Neural Network,” in Proceedings of the 2nd International Conference on Applied Artificial Intelligence and Computing, ICAAIC 2023, 2023, pp. 1638–1645. doi: 10.1109/ICAAIC56838.2023.10140654. DOI: https://doi.org/10.1109/ICAAIC56838.2023.10140654
S. Degadwala, D. Vyas, P. Mitra, S. S. E. Roja, and S. K. Mandal, “Methods of Transfer Learning for Multiclass Hair Disease Categorization,” in 2nd International Conference on Automation, Computing and Renewable Systems, ICACRS 2023 - Proceedings, Dec. 2023, pp. 612–616. doi: 10.1109/ICACRS58579.2023.10404492. DOI: https://doi.org/10.1109/ICACRS58579.2023.10404492
D. D. Pandya, G. Amarawat, A. Jadeja, S. Degadwala, and D. Vyas, “Analysis and Prediction of Location based Criminal Behaviors Through Machine Learning,” in International Conference on Edge Computing and Applications, ICECAA 2022 - Proceedings, 2022, pp. 1324–1332. doi: 10.1109/ICECAA55415.2022.9936498. DOI: https://doi.org/10.1109/ICECAA55415.2022.9936498
P. Bam, S. Degadwala, R. Upadhyay, and D. Vyas, “Spoken Language Recognization Based on Features and Classification Methods: A Review,” in Proceedings of the 2nd International Conference on Artificial Intelligence and Smart Energy, ICAIS 2022, 2022, pp. 868–873. doi: 10.1109/ICAIS53314.2022.9743090. DOI: https://doi.org/10.1109/ICAIS53314.2022.9743090
S. Degadwala, U. Chakraborty, S. Saha, H. Biswas, and D. Vyas, “EPNet: Efficient patch-based deep network for real-time semantic segmentation,” in Proceedings of the 3rd International Conference on Intelligent Sustainable Systems, ICISS 2020, 2020, pp. 611–615. doi: 10.1109/ICISS49785.2020.9316079. DOI: https://doi.org/10.1109/ICISS49785.2020.9316079
Downloads
Published
Issue
Section
License
Copyright (c) 2024 International Journal of Scientific Research in Computer Science, Engineering and Information Technology
This work is licensed under a Creative Commons Attribution 4.0 International License.