Water Supply Management Through an Innovative Dashboard Solution
DOI:
https://doi.org/10.32628/CSEIT24103215Keywords:
Water Distribution Network, Logistic Regression, Vulnerability Analysis, Leak Detection, Machine Learning, Artificial Intelligence, Big Data Processing, GIS, Hydrological Modelling, Water Supply, Sewer Design, Agricultural Pollution, Nonpoint Source PollutionAbstract
The increased public awareness and stronger restrictions have led to a rising recognition of the significance of advanced technology, especially Geographic Information Systems (GIS), in the management of water resources. The use of GIS in water management is highlighted in this work, with particular attention paid to pollution control, hydrologic modelling, and analytical water supply systems. Furthermore, by combining six conditioning factors and applying vulnerability analysis and logistic regression, it offers a novel approach to leak detection in water distribution networks (WDNs). In order to support preventive maintenance and resource allocation, the model predicts vulnerable locations properly. It is also suggested to use machine learning algorithms to optimise turbine maintenance schedules as part of a predictive maintenance framework for hydroelectric power facilities. High accuracy rates are attained by the framework, which finds important variables for maintenance prediction. These methods provide useful instruments for effective management of water resources overall.
Downloads
References
Rauch, E.; Linder, C.; Dallasega, P. Anthropocentric perspective of production before and within Industry 4.0. Comput. Ind. Eng. 2020, 139, 105644. DOI: https://doi.org/10.1016/j.cie.2019.01.018
Marjani, M.; Nasaruddin, F.; Gani, A.; Karim, A.; Abaker, I.; Hashem, T.; Siddiqa, A.; Yaqoob, I. Big IoT Data Analytics: Architecture, Opportunities, and Open Research Challenges. IEEE Access 2017, 5, 5247–5261. DOI: https://doi.org/10.1109/ACCESS.2017.2689040
Candanedo, I.S.; Nieves, E.H.; González, S.R.; Martín, M.T.S.; Briones, A.G. Machine learning predictive model for Industry 4.0. In Proceedings of the 13th International Conference on Knowledge Management in Organizations—KMO 2018: Knowledge Management in Organizations, Žilina, Slovakia, 6–10 August 2018; pp. 501–510. DOI: https://doi.org/10.1007/978-3-319-95204-8_42
Hernavs, J.; Ficko, M.; Berus, L.; Rudolf, R.; Klanˇcnik, S. Deep Learning in Industry 4.0—Brief Overview. J. Prod. Eng. 2018, 21, 1–5. DOI: https://doi.org/10.24867/JPE-2018-02-001
Cholet, F. Deep Learning with Python; Manning Publications: Shelter Island, NY, USA, 2018; 361p
Susto, G.A.; Member, S.; Beghi, A.; Luca, C.D. A predictive maintenance system for epitaxy processes based on filtering and prediction techniques. IEEE Trans. Semicond. Manuf. 2012, 25, 638–649. DOI: https://doi.org/10.1109/TSM.2012.2209131
Susto, G.A.; Schirru, A.; Pampuri, S.; McLoone, S.; Beghi, A. Machine learning for predictive maintenance: A multiple classifier approach. IEEE Trans. Ind. Inform. 2015, 11, 812–820. DOI: https://doi.org/10.1109/TII.2014.2349359
Chrysostomo, G.G.C.; Vallim, M.V.B.A.; Silva, L.S.; Silva, L.A.; Vallim Filho, A.R.A. A Framework for Big Data Analytical Process and Mapping—BAProM: Description of an Application in an Industrial Environment. Energies 2020, 13, 6014. DOI: https://doi.org/10.3390/en13226014
Farok, G.G. Non-revenue water (NRW) is a challenge for global water supply system management: A case study of Dhaka water supply system management. J. Mech. Eng. 2016, 46, 28–35. DOI: https://doi.org/10.3329/jme.v46i1.32520
Ress, E.; Roberson, J.A. The Financial and Policy Implications of Water Loss. J. Am. Water Work. Assoc. 2016, 108, E77–E86. DOI: https://doi.org/10.5942/jawwa.2016.108.0026
Aslam, H.; Mortula, M.M.; Yahia, S.; Ali, T. Evaluation of the factors impacting the water pipe leak detection ability of GPR, infrared cameras, and spectrometers under controlled conditions. Appl. Sci. 2022, 12, 1683. DOI: https://doi.org/10.3390/app12031683
Kim, Y.; Lee, S.J.; Park, T.; Lee, G.; Suh, J.C.; Lee, J.M. Robust leak detection and its localization using interval estimation for water distribution network. Comput. Chem. Eng. 2016, 92, 1–17. DOI: https://doi.org/10.1016/j.compchemeng.2016.04.027
Agapiou, A.; Alexakis, D.D.; Themistocleous, K.; Hadjimitsis, D.G. Water leakage detection using remote sensing, field spectroscopy and GIS in semiarid areas of Cyprus. Urban Water J. 2016, 13, 221–231. DOI: https://doi.org/10.1080/1573062X.2014.975726
Kim, Y.; Lee, S.J.; Park, T.; Lee, G.; Suh, J.C.; Lee, J.M. Robust leakage detection and interval estimation of location in water distribution network. IFAC Pap. Line 2015, 48, 1264–1269. DOI: https://doi.org/10.1016/j.ifacol.2015.09.142
Rajeswaran, A.; Narasimhan, S.; Narasimhan, S. A graph partitioning algorithm for leak detection in water distribution networks. Comput. Chem. Eng. 2018, 108, 11–23. DOI: https://doi.org/10.1016/j.compchemeng.2017.08.007
Aslani, B.; Mohebbi, S.; Axthelm, H. Predictive analytics for water main breaks using spatiotemporal data. Urban Water J. 2021, 18, 433–448. DOI: https://doi.org/10.1080/1573062X.2021.1893363
Information on Maps/Mapping Geographic Information Systems (GIS). Research Guides University of Wisconsin-Madison Libraries. Available online: https://researchguides.library.wisc.edu/GIS (accessed on 12 November 2022).
Mortula, M.M.; Ali, T.A.; Sadiq, R.; Idris, A. Al Mulla, A. Impacts of water quality on the spatiotemporal susceptibility of water distribution systems. Clean Soil Air Water 2019, 47, 1800247. DOI: https://doi.org/10.1002/clen.201800247
Giraldo-González, M.M.; Rodríguez, J.P. Comparison of statistical and machine learning models for pipe failure modeling in water distribution networks. Water 2020, 12, 1153. DOI: https://doi.org/10.3390/w12041153
Duan, H.F.; Pan, B.; Wang, M.; Chen, L.; Zheng, F.; Zhang, Y. State-of-the-art review on the transient flow modeling and utilization for urban water supply system (UWSS) management. J. Water Supply Res. Technol. Aqua 2020, 69, 858–893. DOI: https://doi.org/10.2166/aqua.2020.048
Che, T.C.; Duan, H.F.; Lee, P.J. Transient wave-based methods for anomaly detection in fluid pipes: A review. Mech. Syst. Signal Process. 2021, 160, 107874. DOI: https://doi.org/10.1016/j.ymssp.2021.107874
Halfaya, F.; Bensaibi, M.; Davenne, L. Vulnerability assessment of water supply network. Energy Procedia 2012, 18, 772–783. DOI: https://doi.org/10.1016/j.egypro.2012.05.093
Drejza, S.; Bernatchez, P.; Marie, G.; Friesinger, S. Quantifying road vulnerability to coastal hazards: Development of a synthetic index. Ocean. Coast. Manag. 2019, 181, 104894. DOI: https://doi.org/10.1016/j.ocecoaman.2019.104894
Rocha, C.; Antunes, C.; Catita, C. Coastal vulnerability assessment due to sea level rise: The case study of the Atlantic coast of mainland Portugal. Water 2020, 12, 360. DOI: https://doi.org/10.3390/w12020360
T. Gobinath, A. Sumalatha, M. Kumar and M. Dharani. Analysing the performance tradeoffs of parameterized vlsi architecture using tree-logic machine learning system. ICTACT Journal on Microelectronics, april 2023, volume: 09, issue: 01,1498-1502
T. Gobinath, sanjay kumar sonkar, vinod n. Alone and c. Thiripurasundari Enhancing Blockchain Transaction Validation In Wireless Sensor Networks Using Random Forests On Ictact Journal On Communication Technology, june 2023, volume: 14, issue: 02,2901-2906.
R. Gayathri, T. Gobinath, A. Muthumari and R.S.V. Rama swathi. Enhanced AI based Feature Extraction Technique In Multimedia Image Retrieval. ICTACT Journal On Image And Video Processing, may 2023, volume: 13, issue: 04,3021-3027
P. Vijayashankarganth, S. Sathish Kumar , R. Meenakumari , T. Gobinath, K. Vinoth, G. G. Raja Sekhar , and Martin Sankoh .Autonomous Multiport Solar Power Plant with Lithium Ion Battery Storage Using a Voltage Source Inverter for Automotive Applications. Advances in Materials Science and Engineering, Volume 2022 | Article ID 3669513. DOI: https://doi.org/10.1155/2022/3669513
A.Vijayan,T.Gobinath,M.Saravanakarthikeyan . ASCII Value Based Encryption System (AVB).Int. Journal of Engineering Research and Applications. Vol. 6, Issue 4, (Part - 5) April 2016, pp.08-11
John Blesswin, Selva Mary, T. Gobinath, Maheshwari Divate, Catherine Esther Karunya A., Alfiya Abid Shahbad, Deepak Patil, Shibani Raju S. Error-induced inverse pixel visual cryptography for secure QR code communication on Journal of Autonomous Intelligence, Volume 7 Issue 1, 1-11. DOI: https://doi.org/10.32629/jai.v7i1.1129
C.Udhaya Shankar K.Hema Priya, M.Senthil Kumar, T.Gobinath, M.Kumar, A.Sathishkumar . Novel Proposed work for Empirical Word Searching in Cloud Environment. International Journal on Recent and Innovation Trends in Computing and Communication, 12 (1), 19-28. DOI: https://doi.org/10.17762/ijritcc.v12i1.7906
Gobinath T, Anitha Mary X., Shikha Maheshwari, N. Bindu Madhavi, Md. Rafeeq, G. Kannan ( Improved Supply Chain Management in E-Pharmacy Supply Chain Using Machine Learning Intelligence., International Journal of INTELLIGENT SYSTEMS AND APPLICATIONS IN ENGINEERING, 2024, 12(7s), 104–113
A Punitha, M Joseph, Survey of memory, power and temperature optimization techniques in high level synthesis, International Journal of Recent Trends in Engineering,2009,8(2).
A Punitha, M Joseph, A temperature-aware scheduling with incremental binding and floorplanning for HLS, Middle-East Journal of Scientific Research,2014,22(6),pp.822-828
Downloads
Published
Issue
Section
License
Copyright (c) 2024 International Journal of Scientific Research in Computer Science, Engineering and Information Technology
This work is licensed under a Creative Commons Attribution 4.0 International License.