A Hybrid Technique to Predict Brain Tumour using MRI Image
DOI:
https://doi.org/10.32628/CSEIT2410326Keywords:
Convolutional Neural Network, ResNet150, U-net, Deep Learning, MRI imagesAbstract
Currently, the radiologist can more accurately identify brain tumours through the development of Computer-Assisted Diagnosis (CAD), Machine Learning and Deep Learning. Recently, Deep Learning (DL) strategies have gained traction as a means to rapidly and accurately construct automated systems for diagnosing and segmenting the image. The standard approach to this issue is to create a custom feature for classification. Most neurological diseases originate from abnormal growth of brain cells, which can compromise brain architecture and even lead to malignant brain tumours. Brain tumour detection and classification algorithms that are both quick and accurate have been the subject of extensive study. This facilitates the straight forward diagnosis of brain tumours using Magnetic Resonance Image (MRI) images. Through Deep Learning (DL) model the diagnosis of brain malignancies in MRI images using Convolutional Neural Network (CNN) is possible by training the data. So, in this paper the brain tumouris predicted byproposing a Hybridfeature extraction technique i.e., tuned CNN model with ResNet150 and U-net.
Downloads
References
Qureshi, S.A.; Raza, S.E.A.; Hussain, L.; Malibari, A.A.; Nour, M.K.; Rehman, A.U.; Al-Wesabi, F.N.; Hilal, A.M. Intelligent Ultra-Light Deep Learning Model for Multi-Class Brain Tumor Detection. Appl. Sci. 2022, 12, 3715. DOI: https://doi.org/10.3390/app12083715
Zahoor, M.M.; Qureshi, S.A.; Bibi, S.; Khan, S.H.; Khan, A.; Ghafoor, U.; Bhutta, M.R. A New Deep Hybrid Boosted and Ensemble Learning-Based Brain Tumor Analysis Using MRI. Sensors 2022, 22, 2726. DOI: https://doi.org/10.3390/s22072726
Arabahmadi, M.; Farahbakhsh, R.; Rezazadeh, J. Deep Learning for Smart Healthcare—A Survey on Brain Tumor Detection from Medical Imaging. Sensors 2022, 22, 1960. DOI: https://doi.org/10.3390/s22051960
Tandel, G.S.; Biswas, M.; Kade, O.G.; Tiwari, A.; Suri, H.S.; Turk, M.; Laird, J.R.; Asare, C.K.; Ankrah, A.A.; Khanna, N.; et al. A review on a deep learning perspective in brain cancer classification. Cancers 2019, 11, 111. DOI: https://doi.org/10.3390/cancers11010111
Gore, D.V.; Deshpande, V. Comparative study of various techniques using deep Learning for brain tumor detection. In Proceedings of the 2020 IEEE International Conference for Emerging Technology (INCET), Belgaum, India, 5–7 June 2020; pp. 1–4. DOI: https://doi.org/10.1109/INCET49848.2020.9154030
DeAngelis, L.M. Brain tumors. N. Engl. J. Med. 2001, 344, 114–123. DOI: https://doi.org/10.1056/NEJM200101113440207
Borole, V.Y.; Nimbhore, S.S.; Kawthekar, D.S.S. Image processing techniques for brain tumor detection: A review. Int. J. Emerg. Trends Technol. Comput. Sci. (IJETTCS) 2015, 4, 2.
Amin, J.; Sharif, M.; Yasmin, M.; Fernandes, S.L. Big data analysis for brain tumor detection: Deep convolutional neural networks. Future Gener. Comput. Syst. 2018, 87, 290–297. DOI: https://doi.org/10.1016/j.future.2018.04.065
Iorgulescu, J.B.; Sun, C.; Neff, C.; Cioffi, G.; Gutierrez, C.; Kruchko, C.; Ruhl, J.; Waite, K.A.; Negoita, S.; Hofferkamp, J.; et al. Molecular biomarker-defined brain tumors: Epidemiology, validity, and completeness in the United States. Neuro-Oncology 2022, 24, 1989–2000. DOI: https://doi.org/10.1093/neuonc/noac113
Mabray, M.C.; Barajas, R.F.; Cha, S. Modern brain tumor imaging. Brain Tumor Res. Treat. 2015, 3, 8–23. DOI: https://doi.org/10.14791/btrt.2015.3.1.8
Cha, S. Update on brain tumor imaging: From anatomy to physiology. Am. J. Neuroradiol. 2006, 27, 475–487.
Ranjbarzadeh, R.; BagherianKasgari, A.; JafarzadehGhoushchi, S.; Anari, S.; Naseri, M.; Bendechache, M. Brain tumor segmentation based on deep learning and an attention mechanism using MRI multi-modalities brain images. Sci. Rep. 2021, 11, 10930. DOI: https://doi.org/10.1038/s41598-021-90428-8
Tiwari, P.; Pant, B.; Elarabawy, M.M.; Abd-Elnaby, M.; Mohd, N.; Dhiman, G.; Sharma, S. CNN Based Multiclass Brain Tumor Detection Using Medical Imaging. Comput. Intell. Neurosci. 2022, 2022, 1830010. DOI: https://doi.org/10.1155/2022/1830010
Anaya-Isaza, A.; Mera-Jiménez, L. Data Augmentation and Transfer Learning for Brain Tumor Detection in Magnetic Resonance Imaging. IEEE Access 2022, 10, 23217–23233. DOI: https://doi.org/10.1109/ACCESS.2022.3154061
Lotlikar, V.S.; Satpute, N.; Gupta, A. Brain Tumor Detection Using Machine Learning and Deep Learning: A Review. Curr. Med. Imaging 2022, 18, 604–622. DOI: https://doi.org/10.2174/1573405617666210923144739
Xie, Y.; Zaccagna, F.; Rundo, L.; Testa, C.; Agati, R.; Lodi, R.; Manners, D.N.; Tonon, C. Convolutional neural network techniques for brain tumor classification (from 2015 to 2022): Review, challenges, and future perspectives. Diagnostics 2022, 12, 1850. DOI: https://doi.org/10.3390/diagnostics12081850
Mamun, M.; Mahmud, M.I.; Hossain, M.I.; Islam, A.M.; Ahammed, M.S.; Uddin, M.M. Vocal Feature Guided Detection of Parkinson’s Disease Using Machine Learning Algorithms. In Proceedings of the 2022 IEEE 13th Annual Ubiquitous Computing, Electronics, and Mobile Communication Conference (UEMCON), New York, NY, USA, 26–29 October 2022; pp. 566–572. DOI: https://doi.org/10.1109/UEMCON54665.2022.9965732
Mamun, M.; Uddin, M.M.; Kumar Tiwari, V.; Islam, A.M.; Ferdous, A.U. MLHeartDis:Can Machine Learning Techniques Enable to Predict Heart Diseases? In Proceedings of the 2022 IEEE 13th Annual Ubiquitous Computing, Electronics, and Mobile Communication Conference (UEMCON), New York, NY, USA, 26–29 October 2022; pp. 561–565. DOI: https://doi.org/10.1109/UEMCON54665.2022.9965714
Mahmud, M.I.; Mamun, M.; Abdelgawad, A. A Deep Analysis of Textual Features Based Cyberbullying Detection Using Machine Learning. In Proceedings of the 2022 IEEE Global Conference on Artificial Intelligence and Internet of Things (GCAIoT), Maidu, Egypt, 18–21 December 2022; pp. 166–170. DOI: https://doi.org/10.1109/GCAIoT57150.2022.10019058
Usman, K.; Rajpoot, K. Brain tumor classification from multi-modality MRI using wavelets and machine learning. Pattern Anal. Appl. 2017, 20, 871–881. DOI: https://doi.org/10.1007/s10044-017-0597-8
Shao, C.; Yang, Y.; Juneja, S.; GSeetharam, T. IoT data visualization for business intelligence in corporate finance. Inf. Process. Manag. 2022, 59, 102736. DOI: https://doi.org/10.1016/j.ipm.2021.102736
Dhankhar, A.; Juneja, S.; Juneja, A.; Bali, V. Kernel parameter tuning to tweak the performance of classifiers for identification of heart diseases. Int. J. E-Health Med. Commun. (IJEHMC) 2021, 12, 1–16. DOI: https://doi.org/10.4018/IJEHMC.20210701.oa1
Chaplot S., Patnaik L.M., Jagannathan N. Classification of magnetic resonance brain images using wavelets as input to support vector machine and neural network. Biomed Signal Process Control. 2006;1(1):86–92. DOI: https://doi.org/10.1016/j.bspc.2006.05.002
El-Dahshan E.-S.A., Hosny T., Salem A.-B.M. Hybrid intelligent techniques for mri brain images classification. Digital Signal Process. 2010;20(2):433–441. DOI: https://doi.org/10.1016/j.dsp.2009.07.002
W. Chen, B. Liu, S. Peng, J. Sun, X. Qiao, Computer-aided grading of gliomas combining automatic segmentation and radiomics, Int J Biomed Imaging 2018. DOI: https://doi.org/10.1155/2018/2512037
Srikanth B., Suryanarayana S.V. Multi-Class classification of brain tumor images using data augmentation with deep neural network. Mater. Today Proc. 2021 doi: 10.1016/j.matpr.2021.01.601. DOI: https://doi.org/10.1016/j.matpr.2021.01.601
Tandel G.S., Balestrieri A., Jujaray T., Khanna N.N., Saba L., Suri J.S. Multiclass magnetic resonance imaging brain tumor classification using artificial intelligence paradigm. Comput. Biol. Med. 2020;122:103804. doi: 10.1016/j.compbiomed.2020.103804. DOI: https://doi.org/10.1016/j.compbiomed.2020.103804
Deepak S., Ameer P. Brain tumor classification using deep CNN features via transfer learning. Comput. Biol. Med. 2019;111:103345. doi: 10.1016/j.compbiomed.2019.103345. DOI: https://doi.org/10.1016/j.compbiomed.2019.103345
Downloads
Published
Issue
Section
License
Copyright (c) 2024 International Journal of Scientific Research in Computer Science, Engineering and Information Technology
This work is licensed under a Creative Commons Attribution 4.0 International License.