Automated Answersheet Evaluation using BERT

Authors

  • Sudarshan Joshi Department of Computer Engineering Pune Institute of Computer Technology Savitribai Phule Pune University, Pune, Maharashtra, India Author
  • Akshay Bachkar Department of Computer Engineering Pune Institute of Computer Technology Savitribai Phule Pune University, Pune, Maharashtra, India Author
  • Omkar Awaje Department of Computer Engineering Pune Institute of Computer Technology Savitribai Phule Pune University, Pune, Maharashtra, India Author
  • Rhutuj Bhoir Department of Computer Engineering Pune Institute of Computer Technology Savitribai Phule Pune University, Pune, Maharashtra, India Author
  • Kimaya Urane Department of Computer Engineering Pune Institute of Computer Technology Savitribai Phule Pune University, Pune, Maharashtra, India Author

DOI:

https://doi.org/10.32628/CSEIT2410337

Keywords:

Similarity Techniques, Semantic Analysis, atural Language Processing, BERT

Abstract

The research introduces an innovative approach to automating answersheet evaluation. The methodology combines the power of BERT (Bidirectional Encoder Representations from Transformers) and cosine similarity within the realm of natural language inference, allowing for a sophisticated analysis of student responses. BERT’s contextual embeddings provide a deep understanding of the semantic nuances present in answers, while cosine similarity serves as a robust metric for measuring the semantic alignment between student responses and ideal answers. Natural language inference enriches the model’s capacity to decipher inferential relationships, enabling a more nuanced eval- uation that goes beyond surface-level language comprehension. Augmented by natural language inference, our model adeptly captures inferential relationships, enhancing its comprehension of nuanced contextual nuances. The results underscore its potential to redefine automated grading paradigms, offering educators a powerful tool for efficient and unbiased assessments of student answers, thereby contributing to the advancement of educational technology and assessment methodologies.

Downloads

Download data is not yet available.

References

V. Bagaria, M. Badve, M. Beldar and S. Ghane, ”An Intelligent System for Evaluation of Descriptive Answers,” 2020 3rd International Confer- ence on Intelligent Sustainable Systems (ICISS), Thoothukudi, India, 2020, pp. 19-24, doi: 10.1109/ICISS49785.2020.9316110. Examination System.” (2014). DOI: https://doi.org/10.1109/ICISS49785.2020.9316110

Mittal, Himani and Devi, Mandalika. (2016). Machine Learning Tech- niques with Ontology for Subjective Answer Evaluation. International Journal of natural language computing. 5. 10.5121/ijnlc.2016.5201. DOI: https://doi.org/10.5121/ijnlc.2016.5201

Singh, S., Manchekar, O., Patwardhan, A., Rote, U., Jagtap, S. and Chavan, H., 2021, June. Tool for Evaluating Subjective Answers us- ing AI (TESA). In 2021 International Conference on Communication information and Computing Technology (ICCICT) (pp. 1-6). IEEE. DOI: https://doi.org/10.1109/ICCICT50803.2021.9510119

A. Rokade, B. Patil, S. Rajani, S. Revandkar and R. Shedge, ”Automated Grading System Using Natural Language Processing,” 2018 Second International Conference on Inventive Communication and Compu- tational Technologies (ICICCT), Coimbatore, India, 2018, pp. 1123-1127, doi: 10.1109/ICICCT.2018.8473170.ization. JASIST. 57. 1005-1010. 10.1002/asi.20360 DOI: https://doi.org/10.1109/ICICCT.2018.8473170

H.Gomaa, W., and A. Fahmy, A. (2013). A Survey of Text Similarity Approaches. International Journal of Computer Applications, 68(13), 13–18. doi:10.5120/11638-7118 DOI: https://doi.org/10.5120/11638-7118

P. Sitikhu, K. Pahi, P. Thapa and S. Shakya, ”A Comparison of Semantic Similarity Methods for Maximum Human Interpretability,” 2019 Artifi- cial Intelligence for Transforming Business and Society (AITB), Kath- mandu, Nepal, 2019, pp. 1-4, doi: 10.1109/AITB48515.2019.8947433. DOI: https://doi.org/10.1109/AITB48515.2019.8947433

Kim, Y.S., Oh, J.S., Lee, J.Y. and Chang, J.H., 2005. An intelligent grading system for descriptive examination papers based on probabilistic latent semantic analysis. In AI 2004: Advances in Artificial Intelligence: 17th Australian Joint Conference on Artificial Intelligence, Cairns, Aus- tralia, December 4-6, 2004. Proceedings 17 (pp. 1141-1146). Springer Berlin Heidelberg. DOI: https://doi.org/10.1007/978-3-540-30549-1_114

Resnik, P., 1995. Using information content to evaluate semantic simi- larity in a taxonomy. arXiv preprint cmp-lg/9511007.

Ghosh, S. and Fatima, S.S., 2008, November. Design of an Automated Essay Grading (AEG) system in Indian context. In TENCON 2008-2008 IEEE Region 10 Conference (pp. 1-6). IEEE. DOI: https://doi.org/10.1109/TENCON.2008.4766677

Bloomfield, A., 2010, October. Evolution of a digital paper exam grading system. In 2010 IEEE Frontiers in Education Conference (FIE) (pp. T1G-1). IEEE. DOI: https://doi.org/10.1109/FIE.2010.5673292

Sinha, P., Kaul, A., Bharadia, S. and Rathi, S., 2018, March. Answer evaluation using machine learning. In Conference Paper.

Y. Nakamura, K. Sakamoto, K. Inoue, H. Washizaki and Y. Fukazawa, ”Evaluation of Understandability of UML Class Diagrams by Using Word Similarity,” 2011 Joint Conference of the 21st International Work- shop on Software Measurement and the 6th International Conference on Software Process and Product Measurement, Nara, Japan, 2011, pp. 178-187, doi: 10.1109/IWSM-MENSURA.2011.50. DOI: https://doi.org/10.1109/IWSM-MENSURA.2011.50

Modi, S., Taher, H.A. and Mahmud, H., 2021. A Tool to Automate Stu- dent UML diagram Evaluation. Academic Journal of Nawroz University, 10(2), pp.189-198. DOI: https://doi.org/10.25007/ajnu.v10n2a1035

Manchanda, B., Athavale, V.A. and kumar Sharma, S., 2016. Various techniques used for grammar checking. International Journal of Com- puter Applications and Information Technology, 9(1), p.177.

Cer, Daniel, Mona Diab, Eneko Agirre, Inigo Lopez-Gazpio, and Lucia Specia. ”Semeval-2017 task 1: Semantic textual similarity-multilingual and cross-lingual focused evaluation.” arXiv preprint arXiv:1708.00055 (2017). DOI: https://doi.org/10.18653/v1/S17-2001

Christopher Bryant, Zheng Yuan, Muhammad Reza Qorib, Hannan Cao, Hwee Tou Ng, Ted Briscoe; Grammatical Error Correction: A Survey of the State of the Art. Computational Linguistics 2023; doi: https://doi. org/10.1162/coli a 00478. DOI: https://doi.org/10.1162/coli_a_00478

Haiyin He, Darchia Maia, ”Application of Grammar Error Detection Method for English Composition Based on Machine Learning”, Security and Communication Networks, vol. 2022, Article ID 7957365, 9 pages, 2022. https://doi.org/10.1155/2022/7957365 DOI: https://doi.org/10.1155/2022/7957365

Xiuhua Wang, Weixuan Zhong, ”Research and Implementation of En- glish Grammar Check and Error Correction Based on Deep Learning”, Scientific Programming, vol. 2022, Article ID 4082082, 10 pages, 2022. https://doi.org/10.1155/2022/4082082 DOI: https://doi.org/10.1155/2022/4082082

Qian Li, Hao Peng, Jianxin Li, Congying Xia, Renyu Yang, Lichao Sun, Philip S. Yu, and Lifang He. 2022. A Survey on Text Clas- sification: From Traditional to Deep Learning. ACM Trans. In- tell. Syst. Technol. 13, 2, Article 31 (April 2022), 41 pages. https://doi.org/10.1145/3495162. DOI: https://doi.org/10.1145/3495162

R. Baeza-Yates and G. Valiente, ”An image similarity measure based on graph matching,” Proceedings Seventh International Symposium on String Processing and Information Retrieval. SPIRE 2000, A Curuna, Spain, 2000, pp. 28-38, doi: 10.1109/SPIRE.2000.878177. DOI: https://doi.org/10.1109/SPIRE.2000.878177

DESAI, M.B., DESAI, V.D., GUPTA, R.S., MEVADA, D.D. and MISTRY, Y.S., 2021. A SURVEY ON AUTOMATIC SUBJECTIVE ANSWER EVALUATION.

Kumari, Vijay, Prachi Godbole, and Yashvardhan Sharma. ”Automatic Subjective Answer Evaluation.” (2023). DOI: https://doi.org/10.5220/0011656000003411

Girkar, Abhishek. ”Mohit khambayat, Ajay Waghmare, Supriya Chaud- hary. Subjective answer evaluation using natural language processing and machine learning.” International Research Journal of Engineering and Technology (IRJET) 8, no. 4 (2021): 50405043.

Noorbehbahani, F. and Kardan, A.A., 2011. The automatic assessment of free text answers using a modified BLEU algorithm. Computers & Education, 56(2), pp.337-345.

Peng, X., Zhang, X., Li, Y. and Liu, B., 2020. Research on image feature extraction and retrieval algorithms based on convolutional neural network. Journal of Visual Communication and Image Representation, 69, p.102705. DOI: https://doi.org/10.1016/j.jvcir.2019.102705

Dalal, M.K. and Zaveri, M.A., 2011. Automatic text classification: a technical review. International Journal of Computer Applications, 28(2), pp.37-40. DOI: https://doi.org/10.5120/3358-4633

Praveen, Sheeba. “An Approach to Evaluate Subjective Questions for Online Examination System.” (2014).

Piyush Patil, Sachin Patil, Vaibhav Miniyar ”Subjective Answer Evalu- ation Using Machine Learning”

B. Rujiang and L. Junhua, “Improving documents classification with semantic features,” 2nd Int. Symp. Electron. Commer. Secur. ISECS 2009, vol. 1, pp. 640–643, 2009. DOI: https://doi.org/10.1109/ISECS.2009.231

P. D. Turney and P. Pantel, “From frequency to meaning: Vector space models of semantics,” J. Artif. Intell. Res., vol. 37, pp. 141–188, 2010. DOI: https://doi.org/10.1613/jair.2934

J. Burstein, K. Kukich, S. Wolff, C. Lu, M. Chodorow, L. Braden- Harder, and M. D. Harris, “Automated scoring using a hybrid feature identification technique,” Proc. 17th Int. Conf. Comput. Linguist. -, vol. 1, p. 206, 1998. DOI: https://doi.org/10.3115/980451.980879

D. Callear, J. Jerrams-Smith, and V. Soh, “Bridging gaps in computerised assessment of texts,” Proc. - IEEE Int. Conf. Adv. Learn. Technol. ICALT 2001, pp. 139–140, 2001.

P. Diana, A. Gliozzo, C. Strapparava, E. Alfonseca, P. Rodr, and B. Magnini, “Automatic Assessment of Students ’ free-text Answers underpinned by the Combination of a B LEU -inspired algorithm and Latent Semantic Analysis,” Mach. Transl., 2005.

F. Noorbehbahani and a. a. Kardan, “The automatic assessment of free text answers using a modified BLEU algorithm,” Comput. Educ., vol. 56, no. 2, pp. 337–345, 2011. DOI: https://doi.org/10.1016/j.compedu.2010.07.013

W. Wang and B. Yu, “Text categorization based on combination of modified back propagation neural network and latent semantic analysis,” Neural Comput. Appl., vol. 18, no. 8, pp. 875–881, 2009. DOI: https://doi.org/10.1007/s00521-008-0193-3

C. A. Kumar, M. Radvansky, and J. Annapurna, “Analysis of a Vector Space Model , Latent Semantic Indexing and Formal Concept Analysis for Information Retrieval,” vol. 12, no. 1, pp. 34– 48, 2012. DOI: https://doi.org/10.2478/cait-2012-0003

Downloads

Published

24-06-2024

Issue

Section

Research Articles

Similar Articles

1-10 of 336

You may also start an advanced similarity search for this article.