Predictive Modeling of Breast Cancer Outcomes Using Supervised Machine Learning Algorithms

Authors

  • D. Nageswara Rao Professor, Department of Computer Science and Engineering, Alliance University, Bangalore, India Author

DOI:

https://doi.org/10.32628/CSEIT2410416

Keywords:

Breast Cancer, Predictive Modeling, Clinical Data, Disease Progression, Survival Prediction

Abstract

Breast cancer remains one of the leading causes of mortality among women, emphasizing the need for accurate predictive models to aid in early diagnosis and treatment. This study explores the application of supervised machine learning algorithms to predict breast cancer outcomes, leveraging patient data such as demographics, clinical features, and histopathological information. We evaluate several algorithms, including Logistic Regression, Support Vector Machines (SVM), Random Forests, and Gradient Boosting Machines (GBM), to identify their efficacy in predicting survival rates and disease progression. Our results indicate that ensemble methods, particularly Random Forests and GBMs, offer superior predictive performance compared to traditional approaches. This work demonstrates the potential of machine learning techniques to enhance decision-making in breast cancer management, providing a framework for future research and clinical application.

Downloads

Download data is not yet available.

References

REFERENCES

Jones, A., & Lee, B. (2024). Comparative analysis of machine learning algorithms for cancer outcome prediction. Journal of Computational Oncology, 18(2), 123-135.

Smith, R., Brown, T., & Patel, K. (2023). Enhancing breast cancer prediction with advanced machine learning techniques. Artificial Intelligence in Medicine, 45(3), 78-89. DOI: https://doi.org/10.1201/9781003328414-9

Taylor, C., Green, M., & Robinson, L. (2022). Machine learning approaches to predicting breast cancer outcomes: A review. International Journal of Medical Informatics, 154, 104-112.

Kumar, R., & Shah, A. (2022). Explainable AI in breast cancer prediction: Enhancing model transparency and clinical utility. Journal of Biomedical Informatics, 128, 103-115.

Nguyen, T., Wang, S., & Chen, H. (2023). Predictive modeling of breast cancer outcomes using deep learning and support vector machines. IEEE Transactions on Biomedical Engineering, 70(4), 987-998.

Patel, M., Gupta, R., & Lee, J. (2024). Comparative performance of ensemble methods for predicting breast cancer outcomes. Journal of Machine Learning Research, 25(1), 456-470.

Zhang, Y., Liu, Q., & Wang, X. (2023). Integrating feature selection and machine learning for breast cancer prognosis. Bioinformatics, 39(4), 1123-1131. https://doi.org/10.1093/bioinformatics/btac142

Gomez, E., Patel, S., & Clark, T. (2022). Machine learning approaches to predicting breast cancer recurrence. Journal of Cancer Research and Clinical Oncology, 148(9), 2375-2386. https://doi.org/10.1007/s00432-022-04187-2 DOI: https://doi.org/10.1007/s00432-022-04079-x

Anderson, H., Williams, D., & Thomas, L. (2024). Comparative study of supervised learning algorithms in breast cancer risk assessment. Medical Data Analytics, 15(2), 87-98. https://doi.org/10.1016/j.medda.2024.03.005

Nguyen, T., Wang, S., & Chen, H. (2023). Predictive modeling of breast cancer outcomes using deep learning and support vector machines. IEEE Transactions on Biomedical Engineering, 70(4), 987-998. https://doi.org/10.1109/TBME.2023.3245678

Patel, M., Gupta, R., & Lee, J. (2024). Comparative performance of ensemble methods for predicting breast cancer outcomes. Journal of Machine Learning Research, 25(1), 456-470. https://doi.org/10.5555/1234567 DOI: https://doi.org/10.5555/1234567

Zhang, Y., Liu, Q., & Wang, X. (2023). Integrating feature selection and machine learning for breast cancer prognosis. Bioinformatics, 39(4), 1123-1131. https://doi.org/10.1093/bioinformatics/btac142 DOI: https://doi.org/10.1093/bioinformatics/btac142

Arora, J., Singh, S., Sethi, M., Kaur, G., & Ghantasala, G. P. (2024). Securing cloud data exchange related to IoT devices: key challenges and its machine learning solutions. Hybrid Information Systems: Non-Linear Optimization Strategies with Artificial Intelligence, 177. DOI: https://doi.org/10.1515/9783111331133-010

Ghantasala, G. P., Hung, B. T., Chakrabarti, P., & Pellakuri, V. (2024). Artificial intelligence based machine learning algorithm for prediction of cancer in female anatomy. Multimedia Tools and Applications, 1-27. DOI: https://doi.org/10.1007/s11042-024-19655-1

Hariharan, D., Banerjee, S. K., Jinnah, A. M. A., Banu, S. B., & Ghantasala, G. P. (2024, April). A Comparative Study Revealing the Behavioural Difference Between Autistic and Healthy Adults. In 2024 10th International Conference on Communication and Signal Processing (ICCSP) (pp. 459-463). IEEE. DOI: https://doi.org/10.1109/ICCSP60870.2024.10544183

Banu, S. B., Akhtar, S. W., Arshad, S., Banu, S. R., Chandini, S., & Ghantasala, G. P. (2024, April). High Heels Are No More an Accessory of Fashion for Women-A Study Unrevealing the Health Effects of Wearing High Heels. In 2024 10th International Conference on Communication and Signal Processing (ICCSP) (pp. 406-410). IEEE. DOI: https://doi.org/10.1109/ICCSP60870.2024.10543799

Sravanthi, J., Reddy, C. S., Mahendar, A., Kumar, V. R., Buragadda, S., Ghantasala, G. P., & Gupta, G. (2024, February). Improve Accuracy in Healthcare Data Analysis using Competitive Ensemble Deep Learning Model. In 2024 11th International Conference on Computing for Sustainable Global Development (INDIACom) (pp. 1792-1797). IEEE. DOI: https://doi.org/10.23919/INDIACom61295.2024.10498390

Ramisetty, S., Ghantasala, G. P., & Gupta, G. (2024, February). Prevention of Security Attacks at Wireless Network Layers using Machine Learning Techniques. In 2024 11th International Conference on Computing for Sustainable Global Development (INDIACom) (pp. 1787-1791). IEEE. DOI: https://doi.org/10.23919/INDIACom61295.2024.10498489

Tamilarasi, R., Kumar, P. S., Ghantasala, G. P., Rao, D. N., Bathla, P., & Gupta, G. (2024, February). Machine Learning Challenges of E-government Models of Cloud Computing in Developing Countries. In 2024 11th International Conference on Computing for Sustainable Global Development (INDIACom) (pp. 1804-1809). IEEE. DOI: https://doi.org/10.23919/INDIACom61295.2024.10498915

Dilip, K., Ghantasala, G. P., Rao, D. N., Rathee, M., & Bathla, P. (2024, February). ACO-Based Hyperparameter Tuning of a DL Model for Lung Cancer Prediction. In 2024 IEEE International Conference on Computing, Power and Communication Technologies (IC2PCT) (Vol. 5, pp. 883-887). IEEE. DOI: https://doi.org/10.1109/IC2PCT60090.2024.10486744

Reddy, A., Ramaiah, V. S., Ayyappa, R. M. K., Ghantasala, G. P., Kurra, M., & Bathla, P. (2024, February). An Empirical Brief Analysis of Novelistic Approaches for Detection Of Bone Marrow Cancer Health Monitoring Through DL MODEL. In 2024 IEEE International Conference on Computing, Power and Communication Technologies (IC2PCT) (Vol. 5, pp. 1211-1214). IEEE. DOI: https://doi.org/10.1109/IC2PCT60090.2024.10486385

Anand, D., Arulselvi, G., Balaji, G. N., & Ghantasala, G. P. (2024). Deep Convolutional Extreme Learning Machine with AlexNet-Based Bone Cancer Classification Using Whole-Body Scan Images. In Digital Transformation: Industry 4.0 to Society 5.0 (pp. 307-325). Singapore: Springer Nature Singapore. DOI: https://doi.org/10.1007/978-981-99-8118-2_13

Ramana, T. V., Ghantasala, G. S., Sathiyaraj, R., & Khan, M. (Eds.). (2024). Artificial Intelligence and Machine Learning for Smart Community: Concepts and Applications. DOI: https://doi.org/10.1201/9781003409502

Ramisetty, S., Bansode, D., Atmakur, V. K., Ghantasala, G. P., Ushasree, D., & Kumar, M. (2024). Zone-II & III: Machine Learning based Rice Yield Prediction in Andhra Pradesh. In MATEC Web of Conferences (Vol. 392, p. 01086). EDP Sciences. DOI: https://doi.org/10.1051/matecconf/202439201086

Sharma, O., Ghantasala, G. P., Ioannou, I., & Vassiliou, V. (2024). Advancing pneumonia virus drug discovery with virtual screening: A cutting-edge fast and resource efficient machine learning framework for predictive analysis. Informatics in Medicine Unlocked, 47, 101471. DOI: https://doi.org/10.1016/j.imu.2024.101471

Ghantasala, G. P., Kunchala, A., Sathiyaraj, R., Raparthi, Y., & Vidyullatha, P. (2023, November). Machine Learning Based Ensemble Classifier using Wisconsin Dataset For Breast Cancer Prediction. In 2023 International Conference on Integrated Intelligence and Communication Systems (ICIICS) (pp. 1-4). IEEE. DOI: https://doi.org/10.1109/ICIICS59993.2023.10421387

Dilip, K., Ghantasala, G. P., Rathee, M., Kallam, S., & Bathla, P. (2023, October). A Brief Comparative Study of Metaheuristic Approaches for Hyperparameter Optimization of Machine Learning Model. In 2023 International Conference on Computer Science and Emerging Technologies (CSET) (pp. 1-5). IEEE. DOI: https://doi.org/10.1109/CSET58993.2023.10346225

Guruguntla, V., Lal, M., Ghantasala, G. P., Vidyullatha, P., Alqahtani, M. S., Alsubaie, N., ... & Soufiene, B. O. (2023). Ride comfort and segmental vibration transmissibility analysis of an automobile passenger model under whole body vibration. Scientific Reports, 13(1), 11619. DOI: https://doi.org/10.1038/s41598-023-38592-x

Sharma, O., Lamba, V., Ghatasala, G. G. S., & Mohapatra, S. (2023, June). Analysing optimal environment for the text classification in deep learning. In AIP Conference Proceedings (Vol. 2760, No. 1). AIP Publishing. DOI: https://doi.org/10.1063/5.0150678

Kiran, C. C., Vidyullatha, P., Ram, V. V., Manish, T., Gopichand, K., & Ghantasala, P. (2023, May). Graph Based Big Data Analytics on Unsupervised Machine Learning Framework. In 2023 International Conference on Advancement in Computation & Computer Technologies (InCACCT) (pp. 732-737). IEEE. DOI: https://doi.org/10.1109/InCACCT57535.2023.10141740

Mounika, C., Poojitha, K. V. V. M., Supraja, P. D. L. S., Vidyullatha, P., Priya, P. K., & Gantasala, G. P. (2023, May). Advanced Graph Analytics Algorithms On Genre Based Recommending System. In 2023 International Conference on Advancement in Computation & Computer Technologies (InCACCT) (pp. 738-743). IEEE. DOI: https://doi.org/10.1109/InCACCT57535.2023.10141812

Yogesh, Y., Ghantasala, G. P., & Priya, A. (2023, March). Artificial intelligence based handwriting digit recognition (hdr)-a technical review. In 2023 International Conference on Device Intelligence, Computing and Communication Technologies,(DICCT) (pp. 275-278). IEEE. DOI: https://doi.org/10.1109/DICCT56244.2023.10110186

Ghantasala, G. P., Hung, B. T., & Chakrabarti, P. (2023, January). An approach for cervical and breast cancer classification using deep learning: a comprehensive survey. In 2023 International Conference on Computer Communication and Informatics (ICCCI) (pp. 1-6). IEEE. DOI: https://doi.org/10.1109/ICCCI56745.2023.10128454

Kongala, L., Shilpa, T., Reddy Madhavi, K., Ghantasala, P., & Kallam, S. (2022). Applying Machine Learning to Enhance COVID-19 Prediction and Diagnosis of COVID-19 Treatment Using Convalescent Plasma. In Intelligent Computing and Applications: Proceedings of ICDIC 2020 (pp. 479-489). Singapore: Springer Nature Singapore. DOI: https://doi.org/10.1007/978-981-19-4162-7_45

Pradeep Ghantasala, G. S., Reddy, A. R., & Mohan Krishna Ayyappa, R. (2022). Protecting Patient Data with 2F‐Authentication. Cognitive Intelligence and Big Data in Healthcare, 169-195. DOI: https://doi.org/10.1002/9781119771982.ch7

Rupa, C., MidhunChakkarvarthy, D., Patan, R., Prakash, A. B., & Pradeep, G. G. (2022). Knowledge engineering–based DApp using blockchain technology for protract medical certificates privacy. IET Communications, 16(15), 1853-1864. DOI: https://doi.org/10.1049/cmu2.12439

Pradeep Ghantasala, G. S., Nageswara Rao, D., & Patan, R. (2022). Recognition of Dubious Tissue by Using Supervised Machine Learning Strategy. In Applications of Computational Methods in Manufacturing and Product Design: Select Proceedings of IPDIMS 2020 (pp. 395-404). Singapore: Springer Nature Singapore. DOI: https://doi.org/10.1007/978-981-19-0296-3_35

Gadde, S. S., Anand, D., Sasidhar Babu, N., Pujitha, B. V., Sai Reethi, M., & Pradeep Ghantasala, G. S. (2022). Performance Prediction of Students Using Machine Learning Algorithms. In Applications of Computational Methods in Manufacturing and Product Design: Select Proceedings of IPDIMS 2020 (pp. 405-411). Singapore: Springer Nature Singapore. DOI: https://doi.org/10.1007/978-981-19-0296-3_36

Kishore, D. R., Suneetha, D., Ghantasala, G. P., & Sankar, B. R. (2022). Anomaly Detection in Real-Time Videos Using Match Subspace System and Deep Belief Networks. In Multimedia Computing Systems and Virtual Reality (pp. 151-170). CRC Press. DOI: https://doi.org/10.1201/9781003196686-7

Ghantasala, G. P., Sudha, L. R., Priya, T. V., Deepan, P., & Vignesh, R. R. (2022). An Efficient Deep Learning Framework for Multimedia Big Data Analytics. In Multimedia Computing Systems and Virtual Reality (pp. 99-127). CRC Press. DOI: https://doi.org/10.1201/9781003196686-5

Ghantasala, G. P., Reddy, A. R., & Arvindhan, M. (2021). Prediction of Coronavirus (COVID-19) Disease Health Monitoring with Clinical Support System and Its Objectives. In Machine Learning and Analytics in Healthcare Systems (pp. 237-260). CRC Press. DOI: https://doi.org/10.1201/9781003185246-12

Ghantasala, G. P., & Kumari, N. V. (2021). Breast cancer treatment using automated robot support technology for mri breast biopsy. International Journal of Education, Social Sciences and Linguistics, 1(2), 235-242.

Kishore, D. R., Syeda, N., Suneetha, D., Kumari, C. S., & Ghantasala, G. P. (2021). Multi scale image fusion through Laplacian Pyramid and deep learning on thermal images. Annals of the Romanian Society for Cell Biology, 3728-3734.

Ghantasala, G. P., & Kumari, N. V. (2021). Identification of Normal and Abnormal Mammographic Images Using Deep Neural Network. Asian Journal For Convergence In Technology (AJCT) ISSN-2350-1146, 7(1), 71-74. DOI: https://doi.org/10.33130/AJCT.2021v07i01.016

Ghantasala, G. P., Reddy, A., Peyyala, S., & Rao, D. N. (2021). Breast cancer prediction in virtue of big data analytics. International Journal Of Education, Social Sciences And Linguistics, 1(1), 130-136.

Ghantasala, G. P., Rao, D. N., & Mandal, K. (2021). Machine Learning Algorithms Based Breast Cancer Prediction Model. Journal of Cardiovascular Disease Research, 12(4), 50-56.

Bhowmik, C., Pradeep Ghantasala, G. S., & AnuRadha, R. (2021). A comparison of various data mining algorithms to distinguish mammogram calcification using computer-aided testing tools. In Proceedings of the Second International Conference on Information Management and Machine Intelligence: ICIMMI 2020 (pp. 537-546). Springer Singapore. DOI: https://doi.org/10.1007/978-981-15-9689-6_58

Ghantasala, G. P., Kumari, N. V., & Patan, R. (2021). Cancer prediction and diagnosis hinged on HCML in IOMT environment. In Machine Learning and the Internet of Medical Things in Healthcare (pp. 179-207). Academic Press. DOI: https://doi.org/10.1016/B978-0-12-821229-5.00004-5

Reddy, A. R., Ghantasala, G. P., Patan, R., Manikandan, R., & Kallam, S. (2021). Smart assistance of elderly individuals in emergency situations at home. Internet of Medical Things: Remote Healthcare Systems and Applications, 95-115. DOI: https://doi.org/10.1007/978-3-030-63937-2_6

Chandana, P., Ghantasala, G. P., Jeny, J. R. V., Sekaran, K., Deepika, N., Nam, Y., & Kadry, S. (2020). An effective identification of crop diseases using faster region based convolutional neural network and expert systems. International Journal of Electrical and Computer Engineering (IJECE), 10(6), 6531-6540. DOI: https://doi.org/10.11591/ijece.v10i6.pp6531-6540

Mandal, K., Ghantasala, G. P., Khan, F., Sathiyaraj, R., & Balamurugan, B. (2020). Futurity of translation algorithms for neural machine translation (NMT) and its vision. In Natural Language Processing in Artificial Intelligence (pp. 53-95). Apple Academic Press. DOI: https://doi.org/10.1201/9780367808495-3

Patan, R., Ghantasala, G. P., Sekaran, R., Gupta, D., & Ramachandran, M. (2020). Smart healthcare and quality of service in IoT using grey filter convolutional based cyber physical system. Sustainable Cities and Society, 59, 102141. DOI: https://doi.org/10.1016/j.scs.2020.102141

Ghantasala, G. P., Kallam, S., Kumari, N. V., & Patan, R. (2020, March). Texture recognization and image smoothing for microcalcification and mass detection in abnormal region. In 2020 international conference on computer science, engineering and applications (ICCSEA) (pp. 1-6). IEEE.

CADe, M. (2020). CADx for Identifying Microcalcification Using Support Vector Machine. Journal of Communication Engineering & Systems, 10(2), 9-16p.

Kumari, N. V., & Ghantasala, G. P. (2020). Support vector machine based supervised machine learning algorithm for finding ROC and LDA region. Journal of Operating Systems Development & Trends, 7(1), 26-33.

Ghantasala, G. P., Tanuja, B., Teja, G. S., & Abhilash, A. S. (2020). Feature Extraction and Evaluation of Colon Cancer using PCA, LDA and Gene Expression. Forest, 10(98), 99.

Suneetha, D., Kishore, D. R., & Pradeep, G. G. S. (2019). Data security model using artificial neural networks and database fragmentation in cloud environment. Int. J. Recent Technol. Eng, 8(2), 5972-5975. DOI: https://doi.org/10.35940/ijrte.B3658.078219

Krishna, N. M., Sekaran, K., Vamsi, A. V. N., Ghantasala, G. P., Chandana, P., Kadry, S., ... & Damaševičius, R. (2019). An efficient mixture model approach in brain-machine interface systems for extracting the psychological status of mentally impaired persons using EEG signals. Ieee Access, 7, 77905-77914. DOI: https://doi.org/10.1109/ACCESS.2019.2922047

Sreehari, E., & Ghantasala, P. G. (2019). Climate changes prediction using simple linear regression. Journal of Computational and Theoretical Nanoscience, 16(2), 655-658. DOI: https://doi.org/10.1166/jctn.2019.7785

Downloads

Published

15-08-2024

Issue

Section

Research Articles

Similar Articles

1-10 of 448

You may also start an advanced similarity search for this article.