Implementation of the CNN Algorithm for Classification of Electric Meter Recording Images

Authors

  • Harni Kusniyati Informatic, Mercu Buana University, Jakarta, Indonesia Author
  • Raka Yusuf Informatic, Mercu Buana University, Jakarta, Indonesia Author
  • Nuryasin Information System, UIN Syarif Hidayatullah, Jakarta, Indonesia Author

DOI:

https://doi.org/10.32628/CSEIT2410417

Keywords:

Electricity, KWH, Classification, CNN, Resnet34

Abstract

Electricity is a basic human need in carrying out every activity. Electricity usage can be measured using a KWH meter. In Indonesia, electricity customers are divided into two, namely Prepaid and Postpaid. Postpaid electricity customers need to record the numbers written on the KWH meter to find out the rupiah electricity bill that must be charged. In the implementation of recording these numbers, it is not uncommon to encounter obstacles such as a locked customer's fence and so on, so the meter reading results must be re-validated. This study aims to validate the meter record images which are classified into three classes using the Convolutional Neural Network (CNN) algorithm with the Resnet34 architecture. In this study, the highest accuracy level for the Resnet34 architecture was obtained, with an accuracy rate of 97.50%.

Downloads

Download data is not yet available.

References

A. Santoso and G. Ariyanto, “Implementasi Deep Learning berbasis Keras untuk Pengenalan Wajah,” Emit. J. Tek. Elektro, vol. 18, no. 1, pp. 15–21, 2018, doi: 10.23917/emitor.v18i01.6235. DOI: https://doi.org/10.23917/emitor.v18i01.6235

S. R. Suartika E. P, I Wayan, Wijaya Arya Yudhi, “Klasifikasi Citra Menggunakan Convolutional Neural Network (Cnn) Pada Caltech 101,” J. Tek. ITS, vol. 5, no. 1, p. 76, 2016, [Online]. Available: http://repository.its.ac.id/48842/. DOI: https://doi.org/10.12962/j23373539.v5i1.15696

L. H. Ganda and H. Bunyamin, “Penggunaan Augmentasi Data pada Klasifikasi Jenis Kanker Payudara dengan Model Resnet-34,” J. Strateg., vol. 3, no. 1, pp. 187–193, 2021.

A. Ridhovan and A. Suharso, “Penerapan Metode Residual Network (Resnet) Dalam Klasifikasi Penyakit Pada Daun Gandum,” JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 7, no. 1, pp. 58–65, 2022, doi: 10.29100/jipi.v7i1.2410. DOI: https://doi.org/10.29100/jipi.v7i1.2410

Downloads

Published

19-11-2024

Issue

Section

Research Articles

Similar Articles

1-10 of 78

You may also start an advanced similarity search for this article.