Implementation of the CNN Algorithm for Classification of Electric Meter Recording Images
DOI:
https://doi.org/10.32628/CSEIT2410417Keywords:
Electricity, KWH, Classification, CNN, Resnet34Abstract
Electricity is a basic human need in carrying out every activity. Electricity usage can be measured using a KWH meter. In Indonesia, electricity customers are divided into two, namely Prepaid and Postpaid. Postpaid electricity customers need to record the numbers written on the KWH meter to find out the rupiah electricity bill that must be charged. In the implementation of recording these numbers, it is not uncommon to encounter obstacles such as a locked customer's fence and so on, so the meter reading results must be re-validated. This study aims to validate the meter record images which are classified into three classes using the Convolutional Neural Network (CNN) algorithm with the Resnet34 architecture. In this study, the highest accuracy level for the Resnet34 architecture was obtained, with an accuracy rate of 97.50%.
Downloads
References
A. Santoso and G. Ariyanto, “Implementasi Deep Learning berbasis Keras untuk Pengenalan Wajah,” Emit. J. Tek. Elektro, vol. 18, no. 1, pp. 15–21, 2018, doi: 10.23917/emitor.v18i01.6235. DOI: https://doi.org/10.23917/emitor.v18i01.6235
S. R. Suartika E. P, I Wayan, Wijaya Arya Yudhi, “Klasifikasi Citra Menggunakan Convolutional Neural Network (Cnn) Pada Caltech 101,” J. Tek. ITS, vol. 5, no. 1, p. 76, 2016, [Online]. Available: http://repository.its.ac.id/48842/. DOI: https://doi.org/10.12962/j23373539.v5i1.15696
L. H. Ganda and H. Bunyamin, “Penggunaan Augmentasi Data pada Klasifikasi Jenis Kanker Payudara dengan Model Resnet-34,” J. Strateg., vol. 3, no. 1, pp. 187–193, 2021.
A. Ridhovan and A. Suharso, “Penerapan Metode Residual Network (Resnet) Dalam Klasifikasi Penyakit Pada Daun Gandum,” JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 7, no. 1, pp. 58–65, 2022, doi: 10.29100/jipi.v7i1.2410. DOI: https://doi.org/10.29100/jipi.v7i1.2410
Downloads
Published
Issue
Section
License
Copyright (c) 2024 International Journal of Scientific Research in Computer Science, Engineering and Information Technology
This work is licensed under a Creative Commons Attribution 4.0 International License.