Comparative Analysis of Elliptic Curve-Based Cryptographic Approaches for Internet of Things Security

Authors

  • Jean Pierre Ntayagabiri Doctoral School of the University of Burundi, University of Burundi, Bujumbura, Burundi Author
  • Jeremie Ndikumagenge Center for Research in Infrastructure, Environment and Technology (CRIET), University of Burundi, Bujumbura, Burundi Author
  • Youssef Bentaleb Engineering Sciences Laboratory, ENSA Kenitra, Ibn Tofaïl University, Kenitra, Morocco Author
  • Hind El Makhtoum Engineering Sciences Laboratory, ENSA Kenitra, Ibn Tofaïl University, Kenitra, Morocco Author

DOI:

https://doi.org/10.32628/CSEIT2410457

Keywords:

Cryptographic Performance in IoT, Elliptic Curve Cryptography, Encryption and Decryption, IoT System Security.

Abstract

The rapid expansion of the Internet of Things (IoT) introduces significant security challenges, given the resource-constrained nature of most IoT devices. To address these challenges, elliptic curve cryptography (ECC) has emerged as a promising solution due to its ability to deliver high levels of security with shorter key lengths, making it highly efficient for devices with limited computational power and memory. This paper focuses on a comparative analysis of three widely used ECC-based cryptographic algorithms: Elliptic Curve Digital Signature Algorithm (ECDSA), Elliptic Curve Integrated Encryption Scheme (ECIES), and Elliptic Curve Diffie-Hellman (ECDH). Through a detailed evaluation of performance metrics such as key generation speed, execution time, and overall efficiency, the study identifies the strengths and limitations of each algorithm in securing IoT environments. The results reveal that ECDH excels in public key generation speed, making it suitable for applications requiring frequent key exchanges. ECDSA demonstrates the fastest overall execution time, providing an efficient option for digital signatures and authentication. Conversely, ECIES, while slower, offers robust encryption capabilities ideal for scenarios demanding enhanced confidentiality. This comparative study highlights the importance of aligning algorithm selection with specific IoT application requirements, balancing factors like security, performance, resource constraints, and operational complexity. The findings underscore the suitability of ECC-based algorithms in addressing the unique challenges of IoT security.

Downloads

Download data is not yet available.

References

R. Anushiadevi and R. Amirtharajan, ‘Separable reversible data hiding in an encrypted image using the adjacency pixel difference histogram’, Journal of Information Security and Applications, vol. 72, p. 103407, Feb. 2023, doi: 10.1016/j.jisa.2022.103407. DOI: https://doi.org/10.1016/j.jisa.2022.103407

S. Sharma, ‘Cryptography: An Art of Writing a Secret Code’, vol. 8, no. 1, 2017.

B. M. Sai and M. Bhatia, ‘A Survey on IoT Security Using Cryptographic Algorithms’, E3S Web Conf., vol. 453, p. 01048, 2023, doi: 10.1051/e3sconf/202345301048. DOI: https://doi.org/10.1051/e3sconf/202345301048

R. Alajlan, N. Alhumam, and M. Frikha, ‘Cybersecurity for blockchain-based IoT systems: a review’, Applied Sciences, vol. 13, no. 13, p. 7432, 2023. DOI: https://doi.org/10.3390/app13137432

A. R. Kairaldeen, N. F. Abdullah, A. Abu-Samah, and R. Nordin, ‘Peer-to-Peer User Identity Verification Time Optimization in IoT Blockchain Network’, Sensors, vol. 23, no. 4, Art. no. 4, Jan. 2023, doi: 10.3390/s23042106. DOI: https://doi.org/10.3390/s23042106

S. Shi, D. He, L. Li, N. Kumar, M. K. Khan, and K.-K. R. Choo, ‘Applications of blockchain in ensuring the security and privacy of electronic health record systems: A survey’, Computers & Security, vol. 97, p. 101966, Oct. 2020, doi: 10.1016/j.cose.2020.101966. DOI: https://doi.org/10.1016/j.cose.2020.101966

M. Al-Zubaidie, Z. Zhang, and J. Zhang, ‘Efficient and Secure ECDSA Algorithm and its Applications: A Survey’, Feb. 26, 2019, arXiv: arXiv:1902.10313. doi: 10.48550/arXiv.1902.10313.

J. Dubeuf, D. Hely, and V. Beroulle, ‘ECDSA Passive Attacks, Leakage Sources, and Common Design Mistakes’, ACM Trans. Des. Autom. Electron. Syst., vol. 21, no. 2, p. 31:1-31:24, Jan. 2016, doi: 10.1145/2820611. DOI: https://doi.org/10.1145/2820611

S. Aikins-Bekoe and J. Ben, ‘Elliptic Curve Diffie-Hellman (ECDH) Analogy for Secured Wireless Sensor Networks’, IJCA, vol. 176, no. 10, pp. 1–8, Apr. 2020, doi: 10.5120/ijca2020920015. DOI: https://doi.org/10.5120/ijca2020920015

E. H. Teguig, Y. Touati, and A. Ali-Cherif, ‘ECC Based-Approach for Keys Authentication and Security in WSN’, in 2017 9th IEEE-GCC Conference and Exhibition (GCCCE), May 2017, pp. 1–4. doi: 10.1109/IEEEGCC.2017.8447901. DOI: https://doi.org/10.1109/IEEEGCC.2017.8447901

K. Sarwar, S. Yongchareon, and J. Yu, ‘Lightweight ECC with Fragile Zero-Watermarking for Internet of Things Security’, in 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE), Aug. 2018, pp. 867–872. doi: 10.1109/TrustCom/BigDataSE.2018.00125. DOI: https://doi.org/10.1109/TrustCom/BigDataSE.2018.00125

N. J. G. Saho and E. C. Ezin, ‘Comparative Study on the Performance of Elliptic Curve Cryptography Algorithms with Cryptography through RSA Algorithm’, in CARI 2020 - Colloque Africain sur la Recherche en Informatique et en Mathématiques Apliquées, Thiès, Senegal, Oct. 2020. Accessed: Apr. 08, 2024. [Online]. Available: https://hal.science/hal-02926106

I. Upasana, N. Nandanavanam, A. Nandanavanam, and N. Naaz, ‘Performance Characteristics of NTRU and ECC Cryptosystem in context of IoT Environment’, in 2020 IEEE International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER), Oct. 2020, pp. 23–28. doi: 10.1109/DISCOVER50404.2020.9278074. DOI: https://doi.org/10.1109/DISCOVER50404.2020.9278074

S. Baccouri, H. Farhat, T. Azzabi, and R. Attia, ‘Lightweight authentication scheme based on Elliptic Curve El Gamal’, Journal of Information and Telecommunication, pp. 1–31, Nov. 2023, doi: 10.1080/24751839.2023.2281143. DOI: https://doi.org/10.1109/IC_ASET58101.2023.10151215

N. J. G. Saho and E. C. Ezin, ‘Comparative Study on the Performance of Elliptic Curve Cryptography Algorithms with Cryptography through RSA Algorithm’, 2020.

S. Kumar and D. Sharma, ‘Key Generation in Cryptography Using Elliptic-Curve Cryptography and Genetic Algorithm’, Engineering Proceedings, vol. 59, no. 1, Art. no. 1, 2023, doi: 10.3390/engproc2023059059. DOI: https://doi.org/10.3390/engproc2023059059

Z. Chen, J. Gu, and H. Yan, ‘HAE: A Hybrid Cryptographic Algorithm for Blockchain Medical Scenario Applications’, Applied Sciences, vol. 13, no. 22, p. 12163, 2023. DOI: https://doi.org/10.3390/app132212163

Y. Cui, Q. Liu, Y. Yao, X. Xu, W. Wu, and X. Xu, ‘An area-efficient and low-latency elliptic curve scalar multiplication accelerator over prime field’, Microprocessors and Microsystems, vol. 103, p. 104944, Nov. 2023, doi: 10.1016/j.micpro.2023.104944. DOI: https://doi.org/10.1016/j.micpro.2023.104944

M. Farooq and M. H. Khan, ‘QuantIoT Novel Quantum Resistant Cryptographic Algorithm for Securing IoT Devices: Challenges and Solution’, 2023, Accessed: Apr. 14, 2024. [Online]. Available: https://www.researchsquare.com/article/rs-3160075/latest DOI: https://doi.org/10.21203/rs.3.rs-3160075/v1

A. Horpenyuk, I. Opirskyy, and P. Vorobets, ‘Analysis of Problems and Prospects of Implementation of Post-Quantum Cryptographic Algorithms’.

G. Singh, ‘An Analysis of the Security of Cryptocurrency Implementations and Proposed Solutions’, ERA. Accessed: Apr. 08, 2024. [Online]. Available: https://era.library.ualberta.ca/items/396fffdb-041d-450d-8db9-955106c3cf26

T. van Trinh, ‘Quantum-safe Bitcoin’, Master’s Thesis, 2020. Accessed: Apr. 14, 2024. [Online]. Available: https://www.duo.uio.no/handle/10852/81243

S. Ullah, J. Zheng, N. Din, M. T. Hussain, F. Ullah, and M. Yousaf, ‘Elliptic Curve Cryptography; Applications, challenges, recent advances, and future trends: A comprehensive survey’, Computer Science Review, vol. 47, p. 100530, Feb. 2023, doi: 10.1016/j.cosrev.2022.100530. DOI: https://doi.org/10.1016/j.cosrev.2022.100530

B. Driessen, A. Poschmann, and C. Paar, ‘Comparison of innovative signature algorithms for WSNs’, in Proceedings of the first ACM conference on Wireless network security, Alexandria VA USA: ACM, Mar. 2008, pp. 30–35. doi: 10.1145/1352533.1352539. DOI: https://doi.org/10.1145/1352533.1352539

T. Cheneau, A. Boudguiga, and M. Laurent, ‘Significantly improved performances of the cryptographically generated addresses thanks to ECC and GPGPU’, Computers & Security, vol. 29, no. 4, pp. 419–431, Jun. 2010, doi: 10.1016/j.cose.2009.12.008. DOI: https://doi.org/10.1016/j.cose.2009.12.008

S. Xu, C. Li, F. Li, and S. Zhang, ‘An improved sliding window algorithm for ECC multiplication’, in World Automation Congress 2012, Jun. 2012, pp. 335–338. Accessed: Apr. 08, 2024. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/6321291

M. Abdalla, M. Bellare, and P. Rogaway, ‘DHAES: An Encryption Scheme Based on the Diffie-Hellman Problem.’, IACR Cryptol. ePrint Arch., vol. 1999, p. 7, 1999.

M. Abdalla, M. Bellare, and P. Rogaway, ‘The Oracle Diffie-Hellman Assumptions and an Analysis of DHIES’, in Topics in Cryptology — CT-RSA 2001, vol. 2020, D. Naccache, Ed., in Lecture Notes in Computer Science, vol. 2020. , Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 143–158. doi: 10.1007/3-540-45353-9_12. DOI: https://doi.org/10.1007/3-540-45353-9_12

G. Gaubatz, J.-P. Kaps, E. Ozturk, and B. Sunar, ‘State of the art in ultra-low power public key cryptography for wireless sensor networks’, in Third IEEE International Conference on Pervasive Computing and Communications Workshops, Mar. 2005, pp. 146–150. doi: 10.1109/PERCOMW.2005.76. DOI: https://doi.org/10.1109/PERCOMW.2005.76

J. López and J. Zhou, Wireless Sensor Network Security. IOS Press, 2008.

R. Aleksieieva, A. Fesenko, A. Dudnik, and Y. Zhanerke, ‘Software Tool for Ensuring Data Integrity and Confidentiality Through the Use of Cryptographic Mechanisms’.

O. Belej, ‘The Cryptography of Elliptical Curves Application for Formation of the Electronic Digital Signature’, in Advances in Computer Science for Engineering and Education II, vol. 938, Z. Hu, S. Petoukhov, I. Dychka, and M. He, Eds., in Advances in Intelligent Systems and Computing, vol. 938. , Cham: Springer International Publishing, 2020, pp. 43–57. doi: 10.1007/978-3-030-16621-2_5. DOI: https://doi.org/10.1007/978-3-030-16621-2_5

G. O. Buop, ‘Data storage security for cloud computing using elliptic curve cryptography’, 2020, Accessed: Apr. 14, 2024. [Online]. Available: https://open.uct.ac.za/handle/11427/32489

H. H. Hadi and A. A. Neamah, ‘Diffie-hellman key exchange based on block matrices combined with elliptic curves’, International Journal of Intelligent Systems and Applications in Engineering, vol. 11, no. 5s, pp. 353–360, 2023.

N. Ghanmy, L. Chaari Fourati, and L. Kamoun, ‘A Comprehensive and Comparative Study of Elliptic Curve Cryptography Hardware Implementations for WSN’, IJRFIDSC, vol. 3, no. 1, pp. 119–124, Jun. 2014, doi: 10.20533/ijrfidsc.2046.3715.2014.0014. DOI: https://doi.org/10.20533/ijrfidsc.2046.3715.2014.0014

M. M. Abbas, O. R. Merad-Boudia, and S. Gasmi, ‘Secure Multidimensional Data Aggregation in IoT-Fog Environments using ECIES’, in 2022 First International Conference on Computer Communications and Intelligent Systems (I3CIS), IEEE, 2022, pp. 7–12. Accessed: Apr. 14, 2024. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/10075914/ DOI: https://doi.org/10.1109/I3CIS56626.2022.10075914

P. J. Aswin, K. Jain, and R. Aragona, ‘Performance Comparison of Hybrid Encryption Models’, in 2023 Second International Conference on Augmented Intelligence and Sustainable Systems (ICAISS), IEEE, 2023, pp. 1196–1203. Accessed: Apr. 14, 2024. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/10250698/ DOI: https://doi.org/10.1109/ICAISS58487.2023.10250698

D. Cheung, D. Maslov, J. Mathew, and D. K. Pradhan, ‘On the Design and Optimization of a Quantum Polynomial-Time Attack on Elliptic Curve Cryptography’, in Theory of Quantum Computation, Communication, and Cryptography, vol. 5106, Y. Kawano and M. Mosca, Eds., in Lecture Notes in Computer Science, vol. 5106. , Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 96–104. doi: 10.1007/978-3-540-89304-2_9. DOI: https://doi.org/10.1007/978-3-540-89304-2_9

Y. Jiang, Y. Shen, and Q. Zhu, ‘A lightweight key agreement protocol based on Chinese remainder theorem and ECDH for smart homes’, Sensors, vol. 20, no. 5, p. 1357, 2020. DOI: https://doi.org/10.3390/s20051357

N. Mäurer, T. Gräupl, C. Gentsch, and C. Schmitt, ‘Comparing different Diffie-Hellman key exchange flavors for LDACS’, in 2020 AIAA/IEEE 39th Digital Avionics Systems Conference (DASC), IEEE, 2020, pp. 1–10. Accessed: Apr. 14, 2024. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/9256746/ DOI: https://doi.org/10.1109/DASC50938.2020.9256746

S. Koko and A. Babiker, ‘Comparison of Various Encryption Algorithms and Techniques for improving secured data Communication’, IOSR Journal of Computer Engineering (IOSR-JCE), vol. 17, no. 1, pp. 62–69, 2015.

H. Y. Adarbah, M. F. Moghadam, R. L. R. Maata, A. Mohajerzadeh, and A. H. Al-Badi, ‘Security Challenges of Selective Forwarding Attack and Design a Secure ECDH-Based Authentication Protocol to Improve RPL Security’, IEEE Access, vol. 11, pp. 11268–11280, 2023, doi: 10.1109/ACCESS.2022.3221434. DOI: https://doi.org/10.1109/ACCESS.2022.3221434

G. Kakarla and P. A. Singamsetty, ‘Secure and light-weighted Group based Authentication and Key Agreement Protocol involving ECDH for Machine Type Communications in 3GPP Networks’, Indian J. Comput. Sci. Eng, vol. 11, no. 5, pp. 670–693, 2020. DOI: https://doi.org/10.21817/indjcse/2020/v11i5/201105213

R. Aleksieieva, A. Fesenko, A. Dudnik, and Y. Zhanerke, ‘Software Tool for Ensuring Data Integrity and Confidentiality Through the Use of Cryptographic Mechanisms’.

A. Tidrea, A. Korodi, and I. Silea, ‘Elliptic Curve Cryptography Considerations for Securing Automation and SCADA Systems’, Sensors, vol. 23, no. 5, Art. no. 5, Jan. 2023, doi: 10.3390/s23052686. DOI: https://doi.org/10.3390/s23052686

M. H. Azaim, D. W. Sudiharto, and E. M. Jadied, ‘Design and implementation of encrypted SMS on Android smartphone combining ECDSA - ECDH and AES’, in 2016 Asia Pacific Conference on Multimedia and Broadcasting (APMediaCast), Nov. 2016, pp. 18–23. doi: 10.1109/APMediaCast.2016.7878165. DOI: https://doi.org/10.1109/APMediaCast.2016.7878165

M. Allende et al., ‘Quantum-resistance in blockchain networks’, Scientific Reports, vol. 13, no. 1, p. 5664, 2023. DOI: https://doi.org/10.1038/s41598-023-32701-6

G. Nyame, Z. Qin, K. O.-B. Obour Agyekum, and E. B. Sifah, ‘An ECDSA Approach to Access Control in Knowledge Management Systems Using Blockchain’, Information, vol. 11, no. 2, Art. no. 2, Feb. 2020, doi: 10.3390/info11020111. DOI: https://doi.org/10.3390/info11020111

G. Shankar et al., ‘Improved Multisignature Scheme for Authenticity of Digital Document in Digital Forensics Using Edward-Curve Digital Signature Algorithm’, Security and Communication Networks, vol. 2023, p. e2093407, Apr. 2023, doi: 10.1155/2023/2093407. DOI: https://doi.org/10.1155/2023/2093407

G. SOLDATI, ‘An advanced signature scheme: Schnorr algorithm and its benefits to the bitcoin ecosystem’, 2017, Accessed: Apr. 14, 2024. [Online]. Available: https://www.politesi.polimi.it/handle/10589/144372

L. Chen, D. Moody, A. Regenscheid, A. Robinson, and K. Randall, ‘Recommendations for Discrete Logarithm-based Cryptography: Elliptic Curve Domain Parameters’, National Institute of Standards and Technology, Gaithersburg, MD, NIST SP 800-186, Feb. 2023. doi: 10.6028/NIST.SP.800-186. DOI: https://doi.org/10.6028/NIST.SP.800-186

T. G. Tan, P. Szalachowski, and J. Zhou, ‘Challenges of post-quantum digital signing in real-world applications: a survey’, Int. J. Inf. Secur., vol. 21, no. 4, pp. 937–952, Aug. 2022, doi: 10.1007/s10207-022-00587-6. DOI: https://doi.org/10.1007/s10207-022-00587-6

J. Yang, Y. Tang, Q. Zhou, and C. Jin, ‘A Security Enhanced Blockchain System Supporting Standard Elliptic Curve Digital Signature Algorithm Signature (ECDSA) and SM2 Signature Simultaneously’, in Proceedings of the 2021 5th International Conference on Electronic Information Technology and Computer Engineering, in EITCE ’21. New York, NY, USA: Association for Computing Machinery, Dec. 2022, pp. 521–525. doi: 10.1145/3501409.3501504. DOI: https://doi.org/10.1145/3501409.3501504

V. Bandara, ‘In-depth analysis of the Android supply chain : Vendor customizations on critical networking components’, master thesis, 2023. Accessed: Apr. 08, 2024. [Online]. Available: https://dspace.networks.imdea.org/handle/20.500.12761/1730

V. Gayoso Martínez, L. Hernández Encinas, and C. Sánchez Ávila, ‘A Survey of the Elliptic Curve Integrated Encryption Scheme’, 2010, Accessed: Apr. 08, 2024. [Online]. Available: https://digital.csic.es/handle/10261/32671

B. J. Dowling, ‘Provable security of internet protocols’, phd, Queensland University of Technology, 2017. Accessed: Apr. 08, 2024. [Online]. Available: https://eprints.qut.edu.au/108960/

K. K. S. Gautam, R. Kumar, and D. N. Gupta, ‘Challenges, attacks, QoS, and other security issues for an IoT environment’, presented at the INNOVATIONS IN COMPUTATIONAL AND COMPUTER TECHNIQUES: ICACCT-2021, Mohali, India, 2022, p. 030008. doi: 10.1063/5.0109339. DOI: https://doi.org/10.1063/5.0109339

Downloads

Published

30-11-2024

Issue

Section

Research Articles

How to Cite

[1]
Jean Pierre Ntayagabiri, Jeremie Ndikumagenge, Youssef Bentaleb, and Hind El Makhtoum, “Comparative Analysis of Elliptic Curve-Based Cryptographic Approaches for Internet of Things Security”, Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, vol. 10, no. 6, pp. 1077–1092, Nov. 2024, doi: 10.32628/CSEIT2410457.

Similar Articles

1-10 of 306

You may also start an advanced similarity search for this article.