Detection and Mitigation of DDoS Attacks : A Review of Robust and Scalable Solutions

Authors

  • Dr. Sheshang Degadwala Professor & Head, Department of Computer Engineering, Sigma University, Vadodara, Gujarat, India Author
  • Verma Jyoti Sukhdev Sushila Research Scholar, Department of Computer Engineering, Sigma University, Vadodara, Gujarat, India Author

DOI:

https://doi.org/10.32628/CSEIT2410582

Keywords:

DDoS Attacks, Network Security, Robust Detection, Mitigation Techniques, Scalability, Anomaly Detection, Machine Learning

Abstract

Distributed Denial-of-Service (DDoS) attacks have emerged as a critical threat to network security, causing significant disruptions by overwhelming systems with malicious traffic. The motivation behind this review is the growing sophistication and frequency of DDoS attacks, which demand more robust and scalable detection and mitigation techniques. While numerous methods have been proposed, limitations such as high false positive rates, resource constraints, and the evolving nature of attacks continue to challenge existing solutions. This review aims to analyze and evaluate various robust detection mechanisms, including machine learning, anomaly detection, and hybrid models, with a focus on scalability and adaptability in real-world applications. The objective is to identify key strengths and weaknesses in current approaches, highlighting future research directions for building more resilient DDoS defense systems capable of operating efficiently under high-traffic conditions.

Downloads

Download data is not yet available.

References

F. L. Becerra-Suarez, I. Fernández-Roman, and M. G. Forero, “Improvement of Distributed Denial of Service Attack Detection through Machine Learning and Data Processing,” Mathematics, vol. 12, no. 9, 2024, doi: 10.3390/math12091294. DOI: https://doi.org/10.3390/math12091294

N. S. Musa, N. M. Mirza, S. H. Rafique, A. M. Abdallah, and T. Murugan, “Machine Learning and Deep Learning Techniques for Distributed Denial of Service Anomaly Detection in Software Defined Networks - Current Research Solutions,” IEEE Access, vol. 12, no. January, pp. 17982–18011, 2024, doi: 10.1109/ACCESS.2024.3360868. DOI: https://doi.org/10.1109/ACCESS.2024.3360868

E. Altulaihan, M. A. Almaiah, and A. Aljughaiman, “Anomaly Detection IDS for Detecting DoS Attacks in IoT Networks Based on Machine Learning Algorithms,” Sensors, vol. 24, no. 2, 2024, doi: 10.3390/s24020713. DOI: https://doi.org/10.3390/s24020713

A. F. Al-Zubidi, A. K. Farhan, and S. M. Towfek, “Predicting DoS and DDoS attacks in network security scenarios using a hybrid deep learning model,” Journal of Intelligent Systems, vol. 33, no. 1, 2024, doi: 10.1515/jisys-2023-0195. DOI: https://doi.org/10.1515/jisys-2023-0195

A. A. Alashhab et al., “Enhancing DDoS Attack Detection and Mitigation in SDN Using an Ensemble Online Machine Learning Model,” IEEE Access, vol. 12, no. April, pp. 51630–51649, 2024, doi: 10.1109/ACCESS.2024.3384398. DOI: https://doi.org/10.1109/ACCESS.2024.3384398

I. AlSaleh, A. Al-Samawi, and L. Nissirat, “Novel Machine Learning Approach for DDoS Cloud Detection: Bayesian-Based CNN and Data Fusion Enhancements,” Sensors, vol. 24, no. 5, 2024, doi: 10.3390/s24051418. DOI: https://doi.org/10.3390/s24051418

S. Ahmed et al., “Effective and Efficient DDoS Attack Detection Using Deep Learning Algorithm, Multi-Layer Perceptron,” Future Internet, vol. 15, no. 2, pp. 1–24, 2023, doi: 10.3390/fi15020076. DOI: https://doi.org/10.3390/fi15020076

M. Mittal, K. Kumar, and S. Behal, “Deep learning approaches for detecting DDoS attacks: a systematic review,” Soft Computing, vol. 27, no. 18, pp. 13039–13075, 2023, doi: 10.1007/s00500-021-06608-1. DOI: https://doi.org/10.1007/s00500-021-06608-1

H. Elubeyd and D. Yiltas-Kaplan, “Hybrid Deep Learning Approach for Automatic DoS/DDoS Attacks Detection in Software-Defined Networks,” Applied Sciences (Switzerland), vol. 13, no. 6, 2023, doi: 10.3390/app13063828. DOI: https://doi.org/10.3390/app13063828

D. Kumar, R. K. Pateriya, R. K. Gupta, V. Dehalwar, and A. Sharma, “DDoS Detection using Deep Learning,” Procedia Computer Science, vol. 218, pp. 2420–2429, 2022, doi: 10.1016/j.procs.2023.01.217. DOI: https://doi.org/10.1016/j.procs.2023.01.217

K. A. Dhanya, S. Vajipayajula, K. Srinivasan, A. Tibrewal, T. S. Kumar, and T. G. Kumar, “Detection of Network Attacks using Machine Learning and Deep Learning Models,” Procedia Computer Science, vol. 218, pp. 57–66, 2023, doi: 10.1016/j.procs.2022.12.401. DOI: https://doi.org/10.1016/j.procs.2022.12.401

G. Ramesh, V. A. K. Gorantla, and V. Gude, “A hybrid methodology with learning based approach for protecting systems from DDoS attacks,” Journal of Discrete Mathematical Sciences and Cryptography, vol. 26, no. 5, pp. 1317–1325, 2023, doi: 10.47974/JDMSC-1747. DOI: https://doi.org/10.47974/JDMSC-1747

A. Mustapha et al., “Detecting DDoS attacks using adversarial neural network,” Computers and Security, vol. 127, 2023, doi: 10.1016/j.cose.2023.103117. DOI: https://doi.org/10.1016/j.cose.2023.103117

S. Salmi and L. Oughdir, “Performance evaluation of deep learning techniques for DoS attacks detection in wireless sensor network,” Journal of Big Data, vol. 10, no. 1, 2023, doi: 10.1186/s40537-023-00692-w. DOI: https://doi.org/10.1186/s40537-023-00692-w

A. A. Alahmadi et al., “DDoS Attack Detection in IoT-Based Networks Using Machine Learning Models: A Survey and Research Directions,” Electronics (Switzerland), vol. 12, no. 14, pp. 1–24, 2023, doi: 10.3390/electronics12143103. DOI: https://doi.org/10.3390/electronics12143103

A. Heidari, N. Jafari Navimipour, H. Dag, and M. Unal, (2024). Deepfake detection using deep learning methods: A systematic and comprehensive review, Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol. 14, no. 2, pp. 1–45, doi: 10.1002/widm.1520. DOI: https://doi.org/10.1002/widm.1520

T. T. Nguyen et al., (2024). Deep learning for deepfakes creation and detection: A survey, Computer Vision and Image Understanding, vol. 223, no. 208070100, pp. 1–12, doi: 10.1016/j.cviu.2022.103525. DOI: https://doi.org/10.1016/j.cviu.2022.103525

A. Kaushal, A. Mina, A. Meena, and T. H. Babu, (2024). The societal impact of Deepfakes: Advances in Detection and Mitigation, 2023 14th International Conference on Computing Communication and Networking Technologies, ICCCNT pp. 1–7, doi: 10.1109/ICCCNT56998.2023.10307353. DOI: https://doi.org/10.1109/ICCCNT56998.2023.10307353

S. M. Abdullah et al., (2024). An Analysis of Recent Advances in Deepfake Image Detection in an Evolving Threat Landscape, arxiv, [Online]. Available: http://arxiv.org/abs/2404.16212

L. K. Seng, N. Mamat, H. Abas, N. Hamiza, and W. Ali (2024). AI Integrity Solutions for Deepfake Identification and Prevention, Open International Journal of Informatics (OIJI), vol. 12, no. 1, pp. 35–46. DOI: https://doi.org/10.11113/oiji2024.12n1.297

Degadwala, S., et al. “Improvements in Diagnosing Kawasaki Disease Using Machine Learning Algorithms.” 2024 4th International Conference on Pervasive Computing and Social Networking (ICPCSN), 2024, pp. 7–10, https://doi.org/10.1109/ICPCSN62568.2024.00009. DOI: https://doi.org/10.1109/ICPCSN62568.2024.00009

Mistry, S., and S. Degadwala. “Improved Multi-Type Vehicle Recognition with a Customized YOLO.” 2024 4th International Conference on Pervasive Computing and Social Networking (ICPCSN), 2024, pp. 361–65, https://doi.org/10.1109/ICPCSN62568.2024.00063. DOI: https://doi.org/10.1109/ICPCSN62568.2024.00063

Patel, V., and S. Degadwala. “Deployment of 3D-Conv-LSTM for Precipitation Nowcast via Satellite Data.” 2024 4th International Conference on Pervasive Computing and Social Networking (ICPCSN), 2024, pp. 984–88, https://doi.org/10.1109/ICPCSN62568.2024.00164. DOI: https://doi.org/10.1109/ICPCSN62568.2024.00164

Jagani, D., and S. Degadwala. “Monkeypox Skin Lesion Classification Using Fine-Tune CNN Model.” 2024 4th International Conference on Pervasive Computing and Social Networking (ICPCSN), 2024, pp. 37–41, https://doi.org/10.1109/ICPCSN62568.2024.00014. DOI: https://doi.org/10.1109/ICPCSN62568.2024.00014

Degadwala, Sheshang, et al. “DeepSpine: Multi-Class Spine X-Ray Conditions Classification Using Deep Learning.” Proceedings - 2024 3rd International Conference on Sentiment Analysis and Deep Learning, ICSADL 2024, 2024, pp. 8–13, https://doi.org/10.1109/ICSADL61749.2024.00008. DOI: https://doi.org/10.1109/ICSADL61749.2024.00008

Gadhiya, Niravkumar, et al. “Novel Approach for Data Encryption with Multilevel Compressive.” 7th International Conference on Inventive Computation Technologies, ICICT 2024, 2024, pp. 1368–72, https://doi.org/10.1109/ICICT60155.2024.10544502. DOI: https://doi.org/10.1109/ICICT60155.2024.10544502

Krishnamurthy, Vinay Nagarad Dasavandi, et al. “Predicting Hydrogen Fuel Cell Capacity Using Supervised Learning Models.” 7th International Conference on Inventive Computation Technologies, ICICT 2024, 2024, pp. 1934–38, https://doi.org/10.1109/ICICT60155.2024.10544401. DOI: https://doi.org/10.1109/ICICT60155.2024.10544401

Gadhiya, Niravkumar, et al. “A Review on Different Level Data Encryption through a Compression Techniques.” 7th International Conference on Inventive Computation Technologies, ICICT 2024, 2024, pp. 1378–81, https://doi.org/10.1109/ICICT60155.2024.10544803. DOI: https://doi.org/10.1109/ICICT60155.2024.10544803

Chakraborty, Utsho, et al. “Safeguarding Authenticity in Text with BERT-Powered Detection of AI-Generated Content.” 7th International Conference on Inventive Computation Technologies, ICICT 2024, 2024, pp. 34–37, https://doi.org/10.1109/ICICT60155.2024.10544590. DOI: https://doi.org/10.1109/ICICT60155.2024.10544590

Prajapati, Piyush M., et al. “Exploring Methods of Mitigation against DDoS Attack in an IoT Network.” 7th International Conference on Inventive Computation Technologies, ICICT 2024, 2024, pp. 1373–77, https://doi.org/10.1109/ICICT60155.2024.10544424. DOI: https://doi.org/10.1109/ICICT60155.2024.10544424

Agarwal, Ruhi Himanshu, et al. “Predictive Modeling for Thyroid Disease Diagnosis Using Machine Learning.” 7th International Conference on Inventive Computation Technologies, ICICT 2024, 2024, pp. 227–31, https://doi.org/10.1109/ICICT60155.2024.10544462. DOI: https://doi.org/10.1109/ICICT60155.2024.10544462

Soni, Deepika, et al. “Veterinary Medical Records Application Using AWS.” Proceedings - 2024 5th International Conference on Mobile Computing and Sustainable Informatics, ICMCSI 2024, 2024, pp. 578–84, https://doi.org/10.1109/ICMCSI61536.2024.00091. DOI: https://doi.org/10.1109/ICMCSI61536.2024.00091

Degadwala, Sheshang, et al. “Unveiling Cholera Patterns through Machine Learning Regression for Precise Forecasting.” Proceedings - 2024 5th International Conference on Mobile Computing and Sustainable Informatics, ICMCSI 2024, 2024, pp. 39–44, https://doi.org/10.1109/ICMCSI61536.2024.00012. DOI: https://doi.org/10.1109/ICMCSI61536.2024.00012

Pandya, D. D., et al. “Retraction: Diagnostic Criteria for Depression Based on Both Static and Dynamic Visual Features (IDCIoT 2023 - International Conference on Intelligent Data Communication Technologies and Internet of Things, Proceedings (2023) DOI: 10.1109/IDCIoT56793.2023.10053450).” IDCIoT 2023 - International Conference on Intelligent Data Communication Technologies and Internet of Things, Proceedings, 2023, p. 1, https://doi.org/10.1109/IDCIoT56793.2023.10554339. DOI: https://doi.org/10.1109/IDCIoT56793.2023.10053450

Bhavesh Kataria, Dr. Harikrishna B. Jethva (2020). Sanskrit Character Recognition using Convolutional Neural Networks : A Survey. International Journal of Advanced Science and Technology, 29(7), 1059 – 1071, May 2020. Retrieved from http://sersc.org/journals/index.php/IJAST/article/view/15068

Mewada, Shubbh, et al. “Improved CAD Classification with Ensemble Classifier and Attribute Elimination.” Proceedings - 2023 3rd International Conference on Ubiquitous Computing and Intelligent Information Systems, ICUIS 2023, 2023, pp. 238–43, https://doi.org/10.1109/ICUIS60567.2023.00048. DOI: https://doi.org/10.1109/ICUIS60567.2023.00048

Pandya, Darshanaben D., et al. “Advancements in Multiple Sclerosis Disease Classification Through Machine Learning.” Proceedings - 2023 3rd International Conference on Ubiquitous Computing and Intelligent Information Systems, ICUIS 2023, 2023, pp. 64–69, https://doi.org/10.1109/ICUIS60567.2023.00019. DOI: https://doi.org/10.1109/ICUIS60567.2023.00019

Degadwala, Sheshang, et al. “Enhancing Fleet Management with ESP8266-Based IoT Sensors for Weight and Location Tracking.” 3rd International Conference on Innovative Mechanisms for Industry Applications, ICIMIA 2023 - Proceedings, 2023, pp. 13–17, https://doi.org/10.1109/ICIMIA60377.2023.10425949. DOI: https://doi.org/10.1109/ICIMIA60377.2023.10425949

Bhavesh Kataria "Weather-Climate Forecasting System for Early Warning in Crop Protection, International Journal of Scientific Research in Science, Engineering and Technology, Print ISSN : 2395-1990, Online ISSN : 2394-4099, Volume 1, Issue 5, pp.442-444, September-October-2015. Available at : https://doi.org/10.32628/ijsrset14111 DOI: https://doi.org/10.32628/IJSRSET14111

Degadwala, Sheshang, et al. “Enhancing Mesothelioma Cancer Diagnosis through Ensemble Learning Techniques.” 3rd International Conference on Innovative Mechanisms for Industry Applications, ICIMIA 2023 - Proceedings, 2023, pp. 628–32, https://doi.org/10.1109/ICIMIA60377.2023.10425887. DOI: https://doi.org/10.1109/ICIMIA60377.2023.10425887

Degadwala, Sheshang, et al. “Methods of Transfer Learning for Multiclass Hair Disease Categorization.” 2nd International Conference on Automation, Computing and Renewable Systems, ICACRS 2023 - Proceedings, 2023, pp. 612–16, https://doi.org/10.1109/ICACRS58579.2023.10404492. DOI: https://doi.org/10.1109/ICACRS58579.2023.10404492

Degadwala, Sheshang, et al. “DeepTread: Exploring Transfer Learning in Tyre Quality Classification.” International Conference on Sustainable Communication Networks and Application, ICSCNA 2023 - Proceedings, 2023, pp. 1448–53, https://doi.org/10.1109/ICSCNA58489.2023.10370168. DOI: https://doi.org/10.1109/ICSCNA58489.2023.10370168

Mewada, Shubbh, et al. “Enhancing Raga Identification in Indian Classical Music with FCN-Based Models.” International Conference on Sustainable Communication Networks and Application, ICSCNA 2023 - Proceedings, 2023, pp. 980–85, https://doi.org/10.1109/ICSCNA58489.2023.10370046. DOI: https://doi.org/10.1109/ICSCNA58489.2023.10370046

Degadwala, Sheshang, et al. “Revolutionizing Hops Plant Disease Classification: Harnessing the Power of Transfer Learning.” International Conference on Sustainable Communication Networks and Application, ICSCNA 2023 - Proceedings, 2023, pp. 1706–11, https://doi.org/10.1109/ICSCNA58489.2023.10370692. DOI: https://doi.org/10.1109/ICSCNA58489.2023.10370692

Degadwala, Sheshang, et al. “Crime Pattern Analysis and Prediction Using Regression Models.” International Conference on Self Sustainable Artificial Intelligence Systems, ICSSAS 2023 - Proceedings, 2023, pp. 771–76, https://doi.org/10.1109/ICSSAS57918.2023.10331747. DOI: https://doi.org/10.1109/ICSSAS57918.2023.10331747

Prajapati, Rohit, et al. “QoS Based Virtual Machine Consolidation for Energy Efficient and Economic Utilization of Cloud Resources.” International Conference on Self Sustainable Artificial Intelligence Systems, ICSSAS 2023 - Proceedings, 2023, pp. 951–57, https://doi.org/10.1109/ICSSAS57918.2023.10331674. DOI: https://doi.org/10.1109/ICSSAS57918.2023.10331674

Patel, Fagun, et al. “Recognition of Pistachio Species with Transfer Learning Models.” International Conference on Self Sustainable Artificial Intelligence Systems, ICSSAS 2023 - Proceedings, 2023, pp. 250–55, https://doi.org/10.1109/ICSSAS57918.2023.10331907. DOI: https://doi.org/10.1109/ICSSAS57918.2023.10331907

Patel, Fagun, et al. “Exploring Transfer Learning Models for Multi-Class Classification of Infected Date Palm Leaves.” International Conference on Self Sustainable Artificial Intelligence Systems, ICSSAS 2023 - Proceedings, 2023, pp. 307–12, https://doi.org/10.1109/ICSSAS57918.2023.10331746. DOI: https://doi.org/10.1109/ICSSAS57918.2023.10331746

Pandya, Darshanaben D., et al. “Advancing Erythemato-Squamous Disease Classification with Multi-Class Machine Learning.” 7th International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud), I-SMAC 2023 - Proceedings, 2023, pp. 542–47, https://doi.org/10.1109/I-SMAC58438.2023.10290599. DOI: https://doi.org/10.1109/I-SMAC58438.2023.10290599

Degadwala, Sheshang, et al. “Determine the Degree of Malignancy in Breast Cancer Using Machine Learning.” 7th International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud), I-SMAC 2023 - Proceedings, 2023, pp. 483–87, https://doi.org/10.1109/I-SMAC58438.2023.10290430. DOI: https://doi.org/10.1109/I-SMAC58438.2023.10290430

Pandya, Darshanaben D., et al. “Unveiling the Power of Collective Intelligence: A Voting-Based Approach for Dementia Classification.” 7th International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud), I-SMAC 2023 - Proceedings, 2023, pp. 478–82, https://doi.org/10.1109/I-SMAC58438.2023.10290165. DOI: https://doi.org/10.1109/I-SMAC58438.2023.10290165

Patel, Ankur, et al. “Enhancing Traffic Management with YOLOv5-Based Ambulance Tracking System.” Canadian Conference on Electrical and Computer Engineering, vol. 2023-September, 2023, pp. 528–32, https://doi.org/10.1109/CCECE58730.2023.10288751. DOI: https://doi.org/10.1109/CCECE58730.2023.10288751

Degadwala, Sheshang, et al. “Revolutionizing Prostate Cancer Diagnosis: Harnessing the Potential of Transfer Learning for MRI-Based Classification.” Proceedings of the 4th International Conference on Smart Electronics and Communication, ICOSEC 2023, 2023, pp. 938–43, https://doi.org/10.1109/ICOSEC58147.2023.10275879. DOI: https://doi.org/10.1109/ICOSEC58147.2023.10275879

Patel, Krunal, et al. “Safety Helmet Detection Using YOLO V8.” Proceedings - 2023 3rd International Conference on Pervasive Computing and Social Networking, ICPCSN 2023, 2023, pp. 22–26, https://doi.org/10.1109/ICPCSN58827.2023.00012. DOI: https://doi.org/10.1109/ICPCSN58827.2023.00012

Mehta, Jay N., et al. “EEG Brainwave Data Classification of a Confused Student Using Moving Average Feature.” Proceedings - 2023 3rd International Conference on Pervasive Computing and Social Networking, ICPCSN 2023, 2023, pp. 1461–66, https://doi.org/10.1109/ICPCSN58827.2023.00243. DOI: https://doi.org/10.1109/ICPCSN58827.2023.00243

Pareek, Naveen Kumar, et al. “Prediction of CKD Using Expert System Fuzzy Logic & AI.” Proceedings of the 2023 2nd International Conference on Augmented Intelligence and Sustainable Systems, ICAISS 2023, 2023, pp. 103–08, https://doi.org/10.1109/ICAISS58487.2023.10250477. DOI: https://doi.org/10.1109/ICAISS58487.2023.10250477

Bhavesh Kataria, "The Challenges of Utilizing Information Communication Technologies (ICTs) in Agriculture Extension, International Journal of Scientific Research in Science, Engineering and Technology, Print ISSN : 2395-1990, Online ISSN : 2394-4099, Volume 1, Issue 1, pp.380-384, January-February-2015. Available at : https://doi.org/10.32628/ijsrset1511103 DOI: https://doi.org/10.32628/IJSRSET1511103

Degadwala, Sheshang, et al. “Enhancing Prostate Cancer Diagnosis: Leveraging XGBoost for Accurate Classification.” Proceedings of the 2023 2nd International Conference on Augmented Intelligence and Sustainable Systems, ICAISS 2023, 2023, pp. 1776–81, https://doi.org/10.1109/ICAISS58487.2023.10250511. DOI: https://doi.org/10.1109/ICAISS58487.2023.10250511

Degadwala, Sheshang, et al. “Empowering Maxillofacial Diagnosis Through Transfer Learning Models.” Proceedings of the 5th International Conference on Inventive Research in Computing Applications, ICIRCA 2023, 2023, pp. 728–32, https://doi.org/10.1109/ICIRCA57980.2023.10220830. DOI: https://doi.org/10.1109/ICIRCA57980.2023.10220830

Degadwala, Sheshang, et al. “Enhancing Alzheimer Stage Classification of MRI Images through Transfer Learning.” Proceedings of the 5th International Conference on Inventive Research in Computing Applications, ICIRCA 2023, 2023, pp. 733–37, https://doi.org/10.1109/ICIRCA57980.2023.10220651. DOI: https://doi.org/10.1109/ICIRCA57980.2023.10220651

Degadwala, Sheshang, et al. “Optimizing Hindi Paragraph Summarization through PageRank Method.” Proceedings of the 2nd International Conference on Edge Computing and Applications, ICECAA 2023, 2023, pp. 504–09, https://doi.org/10.1109/ICECAA58104.2023.10212107. DOI: https://doi.org/10.1109/ICECAA58104.2023.10212107

Dasavandi Krishnamurthy, Vinay Nagarad, et al. “Forecasting Future Sea Level Rise: A Data-Driven Approach Using Climate Analysis.” Proceedings of the 2nd International Conference on Edge Computing and Applications, ICECAA 2023, 2023, pp. 646–51, https://doi.org/10.1109/ICECAA58104.2023.10212399. DOI: https://doi.org/10.1109/ICECAA58104.2023.10212399

Degadwala, Sheshang, et al. “Cancer Death Cases Forecasting Using Supervised Machine Learning.” 2023 4th International Conference on Electronics and Sustainable Communication Systems, ICESC 2023 - Proceedings, 2023, pp. 903–07, https://doi.org/10.1109/ICESC57686.2023.10193685. DOI: https://doi.org/10.1109/ICESC57686.2023.10193685

Downloads

Published

01-11-2024

Issue

Section

Research Articles

How to Cite

[1]
Dr. Sheshang Degadwala and Verma Jyoti Sukhdev Sushila, “Detection and Mitigation of DDoS Attacks : A Review of Robust and Scalable Solutions”, Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, vol. 10, no. 5, pp. 12–23, Nov. 2024, doi: 10.32628/CSEIT2410582.

Most read articles by the same author(s)

<< < 1 2 3 > >> 

Similar Articles

1-10 of 321

You may also start an advanced similarity search for this article.