A Review on Kidney Stone Detection using ML and DL Techniques

Authors

  • Dr. Sheshang Degadwala Professor & Head, Department of Computer Engineering, Sigma University, Vadodara, Gujarat, India Author
  • Varsha Rathva Research Scholar, Department of Computer Engineering, Sigma University, Vadodara, Gujarat, India Author

DOI:

https://doi.org/10.32628/CSEIT2410589

Keywords:

Kidney Stone Detection, Machine Learning, Deep Learning, Medical Imaging, Transfer Learning, Fine-Tuning, CT Scans

Abstract

Kidney stone detection is a critical healthcare challenge, as timely and accurate diagnosis can prevent complications. The motivation behind this review is the increasing prevalence of kidney stones and the need for more effective, non-invasive detection methods. Machine learning (ML) and deep learning (DL) techniques offer promising solutions, leveraging medical imaging data to enhance diagnostic accuracy. However, limitations such as high computational cost and reliance on large datasets hinder their full potential. The aim of this review is to analyze the latest advancements in kidney stone detection using ML and DL techniques. The objective is to compare existing methodologies, highlight their strengths and weaknesses, and suggest future research directions, particularly in integrating transfer learning and fine-tuning techniques to enhance performance.

Downloads

Download data is not yet available.

References

Asif, Sohaib, et al. “An Optimized Fusion of Deep Learning Models for Kidney Stone Detection from CT Images.” Journal of King Saud University - Computer and Information Sciences, vol. 36, no. 7, 2024, p. 102130, https://doi.org/10.1016/j.jksuci.2024.102130.

Chaki, Jyotismita, and Aysegul Ucar. “An Efficient and Robust Approach Using Inductive Transfer-Based Ensemble Deep Neural Networks for Kidney Stone Detection.” IEEE Access, vol. 12, no. March, 2024, pp. 32894–910, https://doi.org/10.1109/ACCESS.2024.3370672.

Pande, Sagar Dhanraj, and Raghav Agarwal. “Multi-Class Kidney Abnormalities Detecting Novel System Through Computed Tomography.” IEEE Access, vol. 12, no. February, 2024, pp. 21147–55, https://doi.org/10.1109/ACCESS.2024.3351181.

Manjunatha, D., et al. “Kidney Stone Detection Using Ultrasonographic Images by Support Vector Machine Classification.” Nanotechnology Perceptions, vol. 20, no. S2, 2024, pp. 93–106, https://doi.org/10.62441/nano-ntp.v20iS2.8.

Ahmed, Fahad, et al. “Identification of Kidney Stones in KUB X-Ray Images Using VGG16 Empowered with Explainable Artificial Intelligence.” Scientific Reports, vol. 14, no. 1, 2024, pp. 1–14, https://doi.org/10.1038/s41598-024-56478-4.

Gulhane, Monali, et al. “Integrative Approach for Efficient Detection of Kidney Stones Based on Improved Deep Neural Network Architecture.” SLAS Technology, vol. 29, no. 4, 2024, p. 100159, https://doi.org/10.1016/j.slast.2024.100159.

Lopez-Tiro, Francisco, et al. “On the In Vivo Recognition of Kidney Stones Using Machine Learning.” IEEE Access, vol. 12, no. November 2023, 2024, pp. 10736–59, https://doi.org/10.1109/ACCESS.2024.3351178.

Gonzalez-Zapata, Jorge, et al. “A Metric Learning Approach for Endoscopic Kidney Stone Identification.” Expert Systems with Applications, vol. 255, no. Dl, 2024, pp. 1–15, https://doi.org/10.1016/j.eswa.2024.124711.

Lopez-Tiro, Francisco, et al. “Boosting Kidney Stone Identification in Endoscopic Images Using Two-Step Transfer Learning.” Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 14392 LNAI, 2024, pp. 131–41, https://doi.org/10.1007/978-3-031-47640-2_11.

Tahir, Fouad Shaker, and Asma Abdulelah Abdulrahman. “Kidney Stones Detection Based on Deep Learning and Discrete Wavelet Transform.” Indonesian Journal of Electrical Engineering and Computer Science, vol. 31, no. 3, 2023, pp. 1829–38, https://doi.org/10.11591/ijeecs.v31.i3.pp1829-1838.

Kilic, Ugur, et al. “Exploring the Effect of Image Enhancement Techniques with Deep Neural Networks on Direct Urinary System (DUSX) Images for Automated Kidney Stone Detection.” International Journal of Intelligent Systems, vol. 2023, 2023, pp. 1–17, https://doi.org/10.1155/2023/3801485.

Patro, Kiran Kumar, et al. “Application of Kronecker Convolutions in Deep Learning Technique for Automated Detection of Kidney Stones with Coronal CT Images.” Information Sciences, vol. 640, no. January, 2023, p. 119005, https://doi.org/10.1016/j.ins.2023.119005.

Mahalakshmi, S. Devi. “An Optimized Transfer Learning Model Based Kidney Stone Classification.” Computer Systems Science and Engineering, vol. 44, no. 2, 2023, pp. 1387–95, https://doi.org/10.32604/csse.2023.027610.

Gleeson, Matthew, et al. “Kidney Stone Classification Using Multimodal Multiphoton Microscopy.” ACS Photonics, vol. 10, no. 10, 2023, pp. 3594–604, https://doi.org/10.1021/acsphotonics.3c00651.

Bhavesh Kataria, "Role of Information Technology in Agriculture : A Review, International Journal of Scientific Research in Science, Engineering and Technology, Print ISSN : 2395-1990, Online ISSN : 2394-4099, Volume 1, Issue 1, pp.01-03, 2014. Available at : https://doi.org/10.32628/ijsrset141115

Wang, Fangyijie, et al. “Lightweight Framework for Automated Kidney Stone Detection Using Coronal CT Images.” ArXiv, 2023, http://arxiv.org/abs/2311.14488.

Degadwala, S., et al. “Improvements in Diagnosing Kawasaki Disease Using Machine Learning Algorithms.” 2024 4th International Conference on Pervasive Computing and Social Networking (ICPCSN), 2024, pp. 7–10, https://doi.org/10.1109/ICPCSN62568.2024.00009.

Mistry, S., and S. Degadwala. “Improved Multi-Type Vehicle Recognition with a Customized YOLO.” 2024 4th International Conference on Pervasive Computing and Social Networking (ICPCSN), 2024, pp. 361–65, https://doi.org/10.1109/ICPCSN62568.2024.00063.

Bhavesh Kataria, Dr. Harikrishna B. Jethva (2021). Optical Character Recognition of Sanskrit Manuscripts Using Convolution Neural Networks, Webology, ISSN: 1735-188X, Volume 18 Issue 5, October-2021, pp. 403-424. Available at https://www.webology.org/abstract.php?id=1681

Patel, V., and S. Degadwala. “Deployment of 3D-Conv-LSTM for Precipitation Nowcast via Satellite Data.” 2024 4th International Conference on Pervasive Computing and Social Networking (ICPCSN), 2024, pp. 984–88, https://doi.org/10.1109/ICPCSN62568.2024.00164.

Jagani, D., and S. Degadwala. “Monkeypox Skin Lesion Classification Using Fine-Tune CNN Model.” 2024 4th International Conference on Pervasive Computing and Social Networking (ICPCSN), 2024, pp. 37–41, https://doi.org/10.1109/ICPCSN62568.2024.00014.

Degadwala, Sheshang, et al. “DeepSpine: Multi-Class Spine X-Ray Conditions Classification Using Deep Learning.” Proceedings - 2024 3rd International Conference on Sentiment Analysis and Deep Learning, ICSADL 2024, 2024, pp. 8–13, https://doi.org/10.1109/ICSADL61749.2024.00008.

Gadhiya, Niravkumar, et al. “Novel Approach for Data Encryption with Multilevel Compressive.” 7th International Conference on Inventive Computation Technologies, ICICT 2024, 2024, pp. 1368–72, https://doi.org/10.1109/ICICT60155.2024.10544502.

Krishnamurthy, Vinay Nagarad Dasavandi, et al. “Predicting Hydrogen Fuel Cell Capacity Using Supervised Learning Models.” 7th International Conference on Inventive Computation Technologies, ICICT 2024, 2024, pp. 1934–38, https://doi.org/10.1109/ICICT60155.2024.10544401.

Gadhiya, Niravkumar, et al. “A Review on Different Level Data Encryption through a Compression Techniques.” 7th International Conference on Inventive Computation Technologies, ICICT 2024, 2024, pp. 1378–81, https://doi.org/10.1109/ICICT60155.2024.10544803.

Bhavesh Kataria, Dr. Harikrishna B. Jethva (2021). Optical Character Recognition of Indian Language Manuscripts using Convolutional Neural Networks. Design Engineering, 2021(3), 894-911. doi : https://doi.org/10.17762/de.v2021i3.7789

Chakraborty, Utsho, et al. “Safeguarding Authenticity in Text with BERT-Powered Detection of AI-Generated Content.” 7th International Conference on Inventive Computation Technologies, ICICT 2024, 2024, pp. 34–37, https://doi.org/10.1109/ICICT60155.2024.10544590.

Prajapati, Piyush M., et al. “Exploring Methods of Mitigation against DDoS Attack in an IoT Network.” 7th International Conference on Inventive Computation Technologies, ICICT 2024, 2024, pp. 1373–77, https://doi.org/10.1109/ICICT60155.2024.10544424.

Agarwal, Ruhi Himanshu, et al. “Predictive Modeling for Thyroid Disease Diagnosis Using Machine Learning.” 7th International Conference on Inventive Computation Technologies, ICICT 2024, 2024, pp. 227–31, https://doi.org/10.1109/ICICT60155.2024.10544462.

Soni, Deepika, et al. “Veterinary Medical Records Application Using AWS.” Proceedings - 2024 5th International Conference on Mobile Computing and Sustainable Informatics, ICMCSI 2024, 2024, pp. 578–84, https://doi.org/10.1109/ICMCSI61536.2024.00091.

Degadwala, Sheshang, et al. “Unveiling Cholera Patterns through Machine Learning Regression for Precise Forecasting.” Proceedings - 2024 5th International Conference on Mobile Computing and Sustainable Informatics, ICMCSI 2024, 2024, pp. 39–44, https://doi.org/10.1109/ICMCSI61536.2024.00012.

Pandya, D. D., et al. “Retraction: Diagnostic Criteria for Depression Based on Both Static and Dynamic Visual Features (IDCIoT 2023 - International Conference on Intelligent Data Communication Technologies and Internet of Things, Proceedings (2023) DOI: 10.1109/IDCIoT56793.2023.10053450).” IDCIoT 2023 - International Conference on Intelligent Data Communication Technologies and Internet of Things, Proceedings, 2023, p. 1, https://doi.org/10.1109/IDCIoT56793.2023.10554339.

Mewada, Shubbh, et al. “Improved CAD Classification with Ensemble Classifier and Attribute Elimination.” Proceedings - 2023 3rd International Conference on Ubiquitous Computing and Intelligent Information Systems, ICUIS 2023, 2023, pp. 238–43, https://doi.org/10.1109/ICUIS60567.2023.00048.

Pandya, Darshanaben D., et al. “Advancements in Multiple Sclerosis Disease Classification Through Machine Learning.” Proceedings - 2023 3rd International Conference on Ubiquitous Computing and Intelligent Information Systems, ICUIS 2023, 2023, pp. 64–69, https://doi.org/10.1109/ICUIS60567.2023.00019.

Degadwala, Sheshang, et al. “Enhancing Fleet Management with ESP8266-Based IoT Sensors for Weight and Location Tracking.” 3rd International Conference on Innovative Mechanisms for Industry Applications, ICIMIA 2023 - Proceedings, 2023, pp. 13–17, https://doi.org/10.1109/ICIMIA60377.2023.10425949.

Degadwala, Sheshang, et al. “Enhancing Mesothelioma Cancer Diagnosis through Ensemble Learning Techniques.” 3rd International Conference on Innovative Mechanisms for Industry Applications, ICIMIA 2023 - Proceedings, 2023, pp. 628–32, https://doi.org/10.1109/ICIMIA60377.2023.10425887.

Degadwala, Sheshang, et al. “Methods of Transfer Learning for Multiclass Hair Disease Categorization.” 2nd International Conference on Automation, Computing and Renewable Systems, ICACRS 2023 - Proceedings, 2023, pp. 612–16, https://doi.org/10.1109/ICACRS58579.2023.10404492.

Degadwala, Sheshang, et al. “DeepTread: Exploring Transfer Learning in Tyre Quality Classification.” International Conference on Sustainable Communication Networks and Application, ICSCNA 2023 - Proceedings, 2023, pp. 1448–53, https://doi.org/10.1109/ICSCNA58489.2023.10370168.

Mewada, Shubbh, et al. “Enhancing Raga Identification in Indian Classical Music with FCN-Based Models.” International Conference on Sustainable Communication Networks and Application, ICSCNA 2023 - Proceedings, 2023, pp. 980–85, https://doi.org/10.1109/ICSCNA58489.2023.10370046.

Bhavesh Kataria, Dr. Harikrishna B. Jethva, "CNN-Bidirectional LSTM Based Optical Character Recognition of Sanskrit Manuscripts : A Comprehensive Systematic Literature Review", International Journal of Scientific Research in Computer Science, Engineering and Information Technology , ISSN : 2456-3307, Volume 5, Issue 2, pp.1362-1383, March-April-2019. Available at doi : https://doi.org/10.32628/cseit2064126

Degadwala, Sheshang, et al. “Revolutionizing Hops Plant Disease Classification: Harnessing the Power of Transfer Learning.” International Conference on Sustainable Communication Networks and Application, ICSCNA 2023 - Proceedings, 2023, pp. 1706–11, https://doi.org/10.1109/ICSCNA58489.2023.10370692.

Degadwala, Sheshang, et al. “Crime Pattern Analysis and Prediction Using Regression Models.” International Conference on Self Sustainable Artificial Intelligence Systems, ICSSAS 2023 - Proceedings, 2023, pp. 771–76, https://doi.org/10.1109/ICSSAS57918.2023.10331747.

Prajapati, Rohit, et al. “QoS Based Virtual Machine Consolidation for Energy Efficient and Economic Utilization of Cloud Resources.” International Conference on Self Sustainable Artificial Intelligence Systems, ICSSAS 2023 - Proceedings, 2023, pp. 951–57, https://doi.org/10.1109/ICSSAS57918.2023.10331674.

Patel, Fagun, et al. “Recognition of Pistachio Species with Transfer Learning Models.” International Conference on Self Sustainable Artificial Intelligence Systems, ICSSAS 2023 - Proceedings, 2023, pp. 250–55, https://doi.org/10.1109/ICSSAS57918.2023.10331907.

Patel, Fagun, et al. “Exploring Transfer Learning Models for Multi-Class Classification of Infected Date Palm Leaves.” International Conference on Self Sustainable Artificial Intelligence Systems, ICSSAS 2023 - Proceedings, 2023, pp. 307–12, https://doi.org/10.1109/ICSSAS57918.2023.10331746.

Pandya, Darshanaben D., et al. “Advancing Erythemato-Squamous Disease Classification with Multi-Class Machine Learning.” 7th International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud), I-SMAC 2023 - Proceedings, 2023, pp. 542–47, https://doi.org/10.1109/I-SMAC58438.2023.10290599.

Degadwala, Sheshang, et al. “Determine the Degree of Malignancy in Breast Cancer Using Machine Learning.” 7th International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud), I-SMAC 2023 - Proceedings, 2023, pp. 483–87, https://doi.org/10.1109/I-SMAC58438.2023.10290430.

Bhavesh Kataria "Weather-Climate Forecasting System for Early Warning in Crop Protection, International Journal of Scientific Research in Science, Engineering and Technology, Print ISSN : 2395-1990, Online ISSN : 2394-4099, Volume 1, Issue 5, pp.442-444, September-October-2015. Available at : https://doi.org/10.32628/ijsrset14111

Pandya, Darshanaben D., et al. “Unveiling the Power of Collective Intelligence: A Voting-Based Approach for Dementia Classification.” 7th International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud), I-SMAC 2023 - Proceedings, 2023, pp. 478–82, https://doi.org/10.1109/I-SMAC58438.2023.10290165.

Patel, Ankur, et al. “Enhancing Traffic Management with YOLOv5-Based Ambulance Tracking System.” Canadian Conference on Electrical and Computer Engineering, vol. 2023-September, 2023, pp. 528–32, https://doi.org/10.1109/CCECE58730.2023.10288751.

Degadwala, Sheshang, et al. “Revolutionizing Prostate Cancer Diagnosis: Harnessing the Potential of Transfer Learning for MRI-Based Classification.” Proceedings of the 4th International Conference on Smart Electronics and Communication, ICOSEC 2023, 2023, pp. 938–43, https://doi.org/10.1109/ICOSEC58147.2023.10275879.

Patel, Krunal, et al. “Safety Helmet Detection Using YOLO V8.” Proceedings - 2023 3rd International Conference on Pervasive Computing and Social Networking, ICPCSN 2023, 2023, pp. 22–26, https://doi.org/10.1109/ICPCSN58827.2023.00012.

Mehta, Jay N., et al. “EEG Brainwave Data Classification of a Confused Student Using Moving Average Feature.” Proceedings - 2023 3rd International Conference on Pervasive Computing and Social Networking, ICPCSN 2023, 2023, pp. 1461–66, https://doi.org/10.1109/ICPCSN58827.2023.00243.

Pareek, Naveen Kumar, et al. “Prediction of CKD Using Expert System Fuzzy Logic & AI.” Proceedings of the 2023 2nd International Conference on Augmented Intelligence and Sustainable Systems, ICAISS 2023, 2023, pp. 103–08, https://doi.org/10.1109/ICAISS58487.2023.10250477.

Degadwala, Sheshang, et al. “Enhancing Prostate Cancer Diagnosis: Leveraging XGBoost for Accurate Classification.” Proceedings of the 2023 2nd International Conference on Augmented Intelligence and Sustainable Systems, ICAISS 2023, 2023, pp. 1776–81, https://doi.org/10.1109/ICAISS58487.2023.10250511.

Degadwala, Sheshang, et al. “Empowering Maxillofacial Diagnosis Through Transfer Learning Models.” Proceedings of the 5th International Conference on Inventive Research in Computing Applications, ICIRCA 2023, 2023, pp. 728–32, https://doi.org/10.1109/ICIRCA57980.2023.10220830.

Degadwala, Sheshang, et al. “Enhancing Alzheimer Stage Classification of MRI Images through Transfer Learning.” Proceedings of the 5th International Conference on Inventive Research in Computing Applications, ICIRCA 2023, 2023, pp. 733–37, https://doi.org/10.1109/ICIRCA57980.2023.10220651.

Degadwala, Sheshang, et al. “Optimizing Hindi Paragraph Summarization through PageRank Method.” Proceedings of the 2nd International Conference on Edge Computing and Applications, ICECAA 2023, 2023, pp. 504–09, https://doi.org/10.1109/ICECAA58104.2023.10212107.

Dasavandi Krishnamurthy, Vinay Nagarad, et al. “Forecasting Future Sea Level Rise: A Data-Driven Approach Using Climate Analysis.” Proceedings of the 2nd International Conference on Edge Computing and Applications, ICECAA 2023, 2023, pp. 646–51, https://doi.org/10.1109/ICECAA58104.2023.10212399.

Degadwala, Sheshang, et al. “Cancer Death Cases Forecasting Using Supervised Machine Learning.” 2023 4th International Conference on Electronics and Sustainable Communication Systems, ICESC 2023 - Proceedings, 2023, pp. 903–07, https://doi.org/10.1109/ICESC57686.2023.10193685.

Downloads

Published

01-11-2024

Issue

Section

Research Articles