Integrating BERT, GPT, Prophet Algorithm, and Finance Investment Strategies for Enhanced Predictive Modeling and Trend Analysis in Blockchain Technology

Authors

  • Igba Emmanuel Department of Human Resource, Secretary to the Commission, National Broadcasting Commission Headquarters, Aso-Villa, Abuja, Nigeria Author
  • Moral Kuve Ihimoyan Financial Markets Department, Central Bank of Nigeria, Abuja, Nigeria Author
  • Babatunde Awotiwon Department of Business Administration, University of South Wales, United Kingdom Author
  • Akinkunmi Rasheed Apampa College of Business and Social Sciences, Aston University, Birmingham, United Kingdom Author

DOI:

https://doi.org/10.32628/CSEIT241061214

Keywords:

Predictive Modeling in Blockchain, BERT and GPT for Sentiment Analysis, Prophet Algorithm for Time-Series Forecasting, Finance Investment Strategies Blockchain Trend Analysis, AI-Driven Financial Insights

Abstract

This paper explores the integration of advanced machine learning models, including BERT, GPT, and the Prophet algorithm, with finance investment strategies to enhance predictive modeling and trend analysis in blockchain technology. The rapid evolution of blockchain has transformed financial ecosystems, offering decentralized platforms for secure and transparent transactions. However, predicting market trends and investment opportunities within this domain remains a complex challenge due to high volatility and the multifaceted nature of financial data. By leveraging the natural language processing capabilities of BERT and GPT for sentiment analysis and market behavior prediction, combined with the time-series forecasting strength of the Prophet algorithm, this study aims to provide a robust framework for analyzing blockchain-driven financial markets. Furthermore, the integration of finance investment strategies ensures practical applicability by aligning machine learning insights with real-world investment decision-making processes. The proposed approach demonstrates potential for optimizing portfolio management, enhancing risk mitigation, and improving strategic investment in blockchain ecosystems. This work bridges the gap between cutting-edge machine learning technologies and financial innovation, offering valuable insights for researchers and practitioners in both domains.

Downloads

Download data is not yet available.

References

(FL) Models on Edge Devices by Enhancing Model Explainability with Computational Geometry and Advanced Database Architectures. International Journal of Scientific Research in Computer Science, Engineering and Information Technology. Vol. 10 No. 6 (2024): November-December doi : https://doi.org/10.32628/CSEIT24106185

Tanwar, S., Bhatia, Q., Patel, P., Kumari, A., Singh, P. K., & Hong, W. C. (2019). Machine learning adoption in blockchain-based smart applications: The challenges, and a way forward. IEEE Access, 8, 474-488.

Abu-Ajamieh, F. (2024). A Comparative Study of Machine Learning and Neural Network Models in Short-term Market Prediction.

Adewale, A. (2020). Ethical considerations and data privacy challenges in financial services. Journal of Financial Technology, 15(4), 123-136.

Agarwal, N., Wongthongtham, P., Khairwal, N., & Coutinho, K. (2023). Blockchain application to financial market clearing and settlement systems. Journal of Risk and Financial Management, 16(10), 452. https://doi.org/10.3390/jrfm16100452

Ajayi, A. A., Igba, E., Soyele, A. D., & Enyejo, J. O. (2024). Enhancing Digital Identity and Financial Security in Decentralized Finance (Defi) through Zero-Knowledge Proofs (ZKPs) and Blockchain Solutions for Regulatory Compliance and Privacy. OCT 2024 |IRE Journals | Volume 8 Issue 4 | ISSN: 2456-8880

Ajayi, A. A., Igba, E., Soyele, A. D., & Enyejo, J. O. (2024). Quantum Cryptography and Blockchain-Based Social Media Platforms as a Dual Approach to Securing Financial Transactions in CBDCs and Combating Misinformation in U.S. Elections. International Journal of Innovative Science and Research Technology. Volume 9, Issue 10, Oct.– 2024 ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24OCT1697.

Akindote, O., Enyejo, J. O., Awotiwon, B. O. & Ajayi, A. A. (2024). Integrating Blockchain and Homomorphic Encryption to Enhance Security and Privacy in Project Management and Combat Counterfeit Goods in Global Supply Chain Operations. International Journal of Innovative Science and Research Technology Volume 9, Issue 11, NOV. 2024, ISSN No:-2456-2165. https://doi.org/10.38124/ijisrt/IJISRT24NOV149.

Akindotei, O., Igba E., Awotiwon, B. O., & Otakwu, A (2024). Blockchain Integration in Critical Systems Enhancing Transparency, Efficiency, and Real-Time Data Security in Agile Project Management, Decentralized Finance (DeFi), and Cold Chain Management. International Journal of Scientific Research and Modern Technology (IJSRMT) Volume 3, Issue 11, 2024. DOI: 10.38124/ijsrmt.v3i11.107.

Alamsyah, A., & Muhammad, I. F. (2024). Unraveling the crypto market: A journey into decentralized finance transaction network. Digital Business, 4(1), 100074.

Alex, P. (2023) https://keenethics.com/blog/machine-learning-in-finance

Arunde, N. (2023). Modeling time-series data in volatile markets: A machine learning approach. Journal of Scientific and Engineering Research, 10(3), 125-131.

Bai, L., Xie, X., & Zhang, M. (2024). Leveraging machine learning models for investment strategies in blockchain markets. Journal of Financial Technology, 6(1), 32-48.

Bashiru, O., Ochem, C., Enyejo, L. A., Manuel, H. N. N., & Adeoye, T. O. (2024). The crucial role of renewable energy in achieving the sustainable development goals for cleaner energy. *Global Journal of Engineering and Technology Advances*, 19(03), 011-036. https://doi.org/10.30574/gjeta.2024.19.3.0099

Cecchetti, S. G., & Schoenholtz, K. L. (2017). Modernizing the U.S. payments system: Faster, cheaper, and more secure. Money and Banking

Challoumis, C. (2024, October). THE ECONOMICS OF AI-HOW MACHINE LEARNING IS DRIVING VALUE CREATION. In XVI International Scientific Conference (pp. 94-125).

Chen, Y., Li, F., & Wang, H. (2023). Sentiment analysis for financial markets: A review of models and applications in blockchain Journal of Computational Finance, 28(2), 121-139.

Cheng, Y., Zhang, Z., & Jiang, X. (2020). Data protection in financial AI: Challenges and solutions. Journal of Financial Systems, 24(3), 55-72.

Chitwadgi, B. S. (2024). Manufacturing Production Demand Forecasting Using the Prophet Algorithm (Master's thesis, State University of New York at Binghamton).

Dr Anand, N. (.2018) https://www.opensourceforu.com/2018/08/the-best-open-source-platforms-for-developing-blockchain-applications/

Dr Mark, V. (2019) https://datafloq.com/read/7-blockchain-challenges-solved-enterprise-adoption/

Ekundayo, F. (2024). Economic implications of AI-driven financial markets: Challenges and opportunities in big data integration.

Enyejo, J. O., Adeyemi, A. F., Olola, T. M., Igba, E & Obani, O. Q. (2024). Resilience in supply chains: How technology is helping USA companies navigate disruptions. Magna Scientia Advanced Research and Reviews, 2024, 11(02), 261–277. https://doi.org/10.30574/msarr.2024.11.2.0129

Enyejo, J. O., Babalola, I. N. O., Owolabi, F. R. A. Adeyemi, A. F., Osam-Nunoo, G., & Ogwuche, A. O. (2024). Data-driven digital marketing and battery supply chain optimization in the battery powered aircraft industry through case studies of Rolls-Royce’s ACCEL and Airbus's E-Fan X Projects. International Journal of Scholarly Research and Reviews, 2024, 05(02), 001–020. https://doi.org/10.56781/ijsrr.2024.5.2.0045

Enyejo, J. O., Balogun, T. K., Klu, E. Ahmadu, E. O., & Olola, T. M. (2024). The Intersection of Traumatic Brain Injury, Substance Abuse, and Mental Health Disorders in Incarcerated Women Addressing Intergenerational Trauma through Neuropsychological Rehabilitation. American Journal of Human Psychology (AJHP). Volume 2 Issue 1, Year 2024 ISSN: 2994-8878 (Online). https://journals.e-palli.com/home/index.php/ajhp/article/view/383

Enyejo, J. O., Fajana, O. P., Jok, I. S., Ihejirika, C. J., Awotiwon, B. O., & Olola, T. M. (2024). Digital Twin Technology, Predictive Analytics, and Sustainable Project Management in Global Supply Chains for Risk Mitigation, Optimization, and Carbon Footprint Reduction through Green Initiatives. International Journal of Innovative Science and Research Technology, Volume 9, Issue 11, November– 2024. ISSN No:-2456-2165. https://doi.org/10.38124/ijisrt/IJISRT24NOV1344

Enyejo, L. A., Adewoye, M. B. & Ugochukwu, U. N. (2024). Interpreting Federated Learning

Enyejo, J. O., Obani, O. Q, Afolabi, O. Igba, E. & Ibokette, A. I., (2024). Effect of Augmented Reality (AR) and Virtual Reality (VR) experiences on customer engagement and purchase behavior in retail stores. Magna Scientia Advanced Research and Reviews, 2024, 11(02), 132–150.

Goyal, S., Kumar, A., & Patil, N. (2024). Multi-Task Learning with BERT, RoBERTa, GPT-3.5, ELECTRA, and XLNet for Urgency Classification, Topic Similarity, and Sentiment Analysis in MOOCs. IIETA. Retrieved from iieta.org

Hacioglu, U. (2020). Digital business strategies in blockchain ecosystems. Springer International Publishing, DOI, 10, 978-3.

He, Y., Li, M., & Wang, X. (2023). Addressing bias in AI systems: Ethical implications in finance. Journal of Ethics in Artificial Intelligence, 5(2), 45-59. https://magnascientiapub.com/journals/msarr/sites/default/files/MSARR-2024-0116.pdf

Idoko P. I., Igbede, M. A., Manuel, H. N. N., Ijiga, A. C., Akpa, F. A., & Ukaegbu, C. (2024). Assessing the impact of wheat varieties and processing methods on diabetes risk: A systematic review. World Journal of Biology Pharmacy and Health Sciences, 2024, 18(02), 260–277. https://wjbphs.com/sites/default/files/WJBPHS-2024-0286.pdf

Idoko, I. P., Ijiga, O. M., Harry, K. D., Ezebuka, C. C., Ukatu, I. E., & Peace, A. E. (2024). Renewable energy policies: A comparative analysis of Nigeria and the USA.

Igba, E., Adeyemi, A. F., Enyejo, J. O., Ijiga, A. C., Amidu, G., & Addo, G. (2024). Optimizing Business loan and Credit Experiences through AI powered ChatBot Integration in financial services. Finance & Accounting Research Journal, P-ISSN: 2708-633X, E-ISSN: 2708, Volume 6, Issue 8, P.No. 1436-1458, August 2024. DOI:10.51594/farj.v6i8.1406

Igba, E., Danquah, E. O., Ukpoju, E. A., Obasa, J., Olola, T. M., & Enyejo, J. O. (2024). Use of Building Information Modeling (BIM) to Improve Construction Management in the USA. World Journal of Advanced Research and Reviews, 2024, 23(03), 1799–1813. https://wjarr.com/content/use-building-information-modeling-bim-improve-construction-management-usa

Ijiga, A. C., Aboi, E. J., Idoko, P. I., Enyejo, L. A., & Odeyemi, M. O. (2024). Collaborative innovations in Artificial Intelligence (AI): Partnering with leading U.S. tech firms to combat human trafficking. Global Journal of Engineering and Technology Advances, 2024,18(03), 106-123. https://gjeta.com/sites/default/files/GJETA-2024-0046.pdf

Ijiga, A. C., Abutu E. P., Idoko, P. I., Ezebuka, C. I., Harry, K. D., Ukatu, I. E., & Agbo, D. O. (2024). Technological innovations in mitigating winter health challenges in New York City, USA. International Journal of Science and Research Archive, 2024, 11(01), 535–551.• https://ijsra.net/sites/default/files/IJSRA-2024-0078.pdf

Ijiga, A. C., Abutu, E. P., Idoko, P. I., Agbo, D. O., Harry, K. D., Ezebuka, C. I., & Umama, E. E. (2024). Ethical considerations in implementing generative AI for healthcare supply chain optimization: A cross-country analysis across India, the United Kingdom, and the United States of America. International Journal of Biological and Pharmaceutical Sciences Archive, 2024, 07(01), 048–063. https://ijbpsa.com/sites/default/files/IJBPSA-2024-0015.pdf

Ijiga, A. C., Balogun, T. K., Ahmadu, E. O., Klu, E., Olola, T. M., & Addo, G. (2024). The role of the United States in shaping youth mental health advocacy and suicide prevention through foreign policy and media in conflict zones. Magna Scientia Advanced Research and Reviews, 2024, 12(01), 202–218. https://magnascientiapub.com/journals/msarr/sites/default/files/MSARR-2024-0174.pdf

Ijiga, A. C., Balogun, T. K., Sariki, A. M., Klu, E. Ahmadu, E. O., & Olola, T. M. (2024). Investigating the Influence of Domestic and International Factors on Youth Mental Health and Suicide Prevention in Societies at Risk of Autocratization. NOV 2024 | IRE Journals | Volume 8 Issue 5 | ISSN: 2456-8880.

Ijiga, A. C., Enyejo, L. A., Odeyemi, M. O., Olatunde, T. I., Olajide, F. I & Daniel, D. O. (2024). Integrating community-based partnerships for enhanced health outcomes: A collaborative model with healthcare providers, clinics, and pharmacies across the USA. Open Access Research Journal of Biology and Pharmacy, 2024, 10(02), 081–104. https://oarjbp.com/content/integrating-community-based-partnerships-enhanced-health-outcomes-collaborative-model

Ijiga, A. C., Olola, T. M., Enyejo, L. A., Akpa, F. A., Olatunde, T. I., & Olajide, F. I. (2024). Advanced surveillance and detection systems using deep learning to combat human trafficking. Magna Scientia Advanced Research and Reviews, 2024, 11(01), 267–286. https://magnascientiapub.com/journals/msarr/sites/default/files/MSARR-2024-0091.pdf.

Ijiga, A. C., Olola, T. M., Enyejo, L. A., Akpa, F. A., Olatunde, T. I., & Olajide, F. I. (2024). Advanced surveillance and detection systems using deep learning to combat human trafficking. Magna Scientia Advanced Research and Reviews, 2024, 11(01), 267–286. https://magnascientiapub.com/journals/msarr/sites/default/files/MSARR-2024-0091.pdf.

John, D. L., Binnewies, S., & Stantic, B. (2024). Cryptocurrency Price Prediction Algorithms: A Survey and Future Directions.

Jok, I. S., & Ijiga, A. C. (2024). The Economic and Environmental Impact of Pressure Washing Services on Urban Infrastructure Maintenance and its Role in a Circular Economy. International Journal of Innovative Science and Research Technology. Volume 9, Issue 11, November– 2024. ISSN No:-2456-2165. https://doi.org/10.38124/ijisrt/IJISRT24NOV1508

Kukacka, M., & Kristoufek, L. (2023). Deep learning for Bitcoin price direction prediction: Models and trading strategies empirically compared. Financial Innovation, 9(1), 58. https://doi.org/10.1186/s40854-023-00487-7

Liu, T., Wang, Y., Sun, J., Tian, Y., Huang, Y., Xue, T., ... & Liu, Y. (2024). The Role of Transformer Models in Advancing Blockchain Technology: A Systematic Survey. arXiv preprint arXiv:2409.02139.

Makridakis, S., & Christodoulou, K. (2019). Blockchain: Current challenges and future prospects/applications. Future Internet, 11(12), 258. https://doi.org/10.3390/fi11120258

Mashrur, A., Luo, W., Zaidi, N. A., & Robles-Kelly, A. (2020). Machine learning for financial risk management: a survey. Ieee Access, 8, 203203-203223.

Meena, V. P., & Hameed, I. A. (2024). Credit risk assessment and financial decision support using explainable artificial intelligence. Risks, 12(10), 164. https://doi.org/10.3390/risks12100164

Ojo, A., Sarker, I. H., & Alam, S. (2021). Data privacy in AI: Regulatory compliance and ethical standards in financial institutions. Journal of Data Security, 29(1), 32-50.

Pippas, N., Turkay, C., & Ludvig, E. A. (2024). The Evolution of Reinforcement Learning in Quantitative Finance. arXiv preprint arXiv:2408.10932.

Ridzuan, N. N., Masri, M., Anshari, M., Fitriyani, N. L., & Syafrudin, M. (2024). AI in the financial sector: The line between innovation, regulation, and ethical responsibility. Information, 15(8), 432. https://doi.org/10.3390/info15080432

Swan, M., & Guo, Y. (2024). Blockchain applications, challenges, and opportunities: A survey of a decade of research and future outlook. IEEE Xplore. https://ieeexplore.ieee.org/document/9697256

Taylor, S., Kulkarni, S., & Meier, M. (2023). The impact of deep learning on financial forecasting: A case for hybrid models. Journal of Financial Data Science, 5(2), 45–62.

Tiamiyu, D., Aremu, S. O., Igba, E., Ihejirika, C. J., Adewoye, M. B. & Ajayi, A. A. (2024). Interpretable Data Analytics in Blockchain Networks Using Variational Autoencoders and Model-Agnostic Explanation Techniques for Enhanced Anomaly Detection. International Journal of Scientific Research in Science and Technology. Volume 11, Issue 6 November-December-2024. 152-183. https://doi.org/10.32628/IJSRST24116170

Tight, M. (2023). Time-series forecasting in blockchain markets: Applying Prophet for predictive analytics. Journal of Financial Technology, 45(2), 107-123.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. Advances in Neural Information Processing Systems, 30. Retrieved from Google Scholar.

Zhang, C., Sjarif, N. N. A., & Ibrahim, R. (2024). Deep learning models for price forecasting of financial time series: A review of recent advancements: 2020–2022. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 14(1), e1519.

Zhang, M., Liu, Y., & Chen, Y. (2024). Sentiment analysis in financial markets using BERT and GPT models: Application in blockchain investment strategies. Journal of Computational Finance, 35(3), 203-221.

Zhang, M., Liu, Y., & Chen, Y. (2024). Sentiment analysis in financial markets using BERT and GPT models: Application in blockchain investment strategies. Journal of Computational Finance, 35(3), 203-

Zhou, F. (2020). Leveraging transformer models for sentiment analysis and market prediction in decentralized finance. Journal of AI and Blockchain Research, 11(4), 15-29.

Zhu, Y., Ma, J., Gu, F., Wang, J., Li, Z., Zhang, Y., ... & Yang, X. (2023). Price Prediction of Bitcoin Based on Adaptive Feature Selection and Model Optimization. Mathematics, 11(6), 1335.

Zukaib, U., Cui, X., Hassan, M., Harris, S., Hadi, H. J., & Zheng, C. (2023). Blockchain and Machine Learning in EHR Security: A Systematic Review. IEEE Access, 11, 130230-130256.

Downloads

Published

12-12-2024

Issue

Section

Research Articles