Integrating Smart IoT and AI-Enhanced Systems for Predictive Diagnostics Disease in Healthcare

Authors

  • Suhag Pandya Independent Researcher, India Author

DOI:

https://doi.org/10.32628/CSEIT2410612406

Keywords:

Healthcare, Diabetes disease, IoT, Diagnosis, Predictive Analytics, PIDD Dataset, Artificial Intelligence

Abstract

A developing technology known as the IoT allows for the connectivity of seemingly innocuous gadgets to the web. The IoT has linked millions of sensors and smart devices, which has transformed the healthcare sector. IoT devices driven by AI can identify diabetes by continuously gathering accurate glucose values. This study addresses the critical need for early and accurate diabetes detection using advanced ML algorithms, leveraging the Pima Indian Diabetes Dataset. An accuracy of diagnosing diabetes and non-diabetic cases is evaluated and compared in this study using models such as CNN, XG-Boost, DT, and SVM. Show that the model may improve diagnostic accuracy and facilitate early intervention by conducting a thorough performance evaluation utilising confusion matrices and measures like recall, accuracy, precision, and F1-score. CNN demonstrates superior accuracy of 99% with high precision of 98% and recall rates of 99.9%, positioning it as the most effective model for diabetes detection in this study. The findings underscore the feasibility of DL approaches in healthcare data analysis, contributing to improved healthcare outcomes in diabetes diagnostics.

Downloads

Download data is not yet available.

References

B. Patel, V. K. Yarlagadda, N. Dhameliya, K. Mullangi, and S. C. R. Vennapusa, “Advancements in 5G Technology: Enhancing Connectivity and Performance in Communication Engineering,” Eng. Int., vol. 10, no. 2, pp. 117–130, 2022, doi: 10.18034/ei.v10i2.715. DOI: https://doi.org/10.18034/ei.v10i2.715

R. Arora, S. Kumar, N. Jain, and M. T. Nafis, “Revolutionizing Healthcare with Cloud Computing: Superior Patient Care and Enhanced Service Efficiency,” SSRN, 2022, doi: http://dx.doi.org/10.2139/ssrn.4957197. DOI: https://doi.org/10.2139/ssrn.4957197

Abhishek Goyal, “Integrating IoT and Agile Methodologies for Smarter Engineering Solutions,” Int. J. Sci. Res. Arch., vol. 8, no. 2, pp. 754–766, Apr. 2023, doi: 10.30574/ijsra.2023.8.2.0284. DOI: https://doi.org/10.30574/ijsra.2023.8.2.0284

J. Thomas, “Optimizing Nurse Scheduling : A Supply Chain Approach for Healthcare Institutions,” pp. 2251–2259, 2024. DOI: https://doi.org/10.52783/jes.3175

M. S. Farooq, S. Riaz, R. Tehseen, U. Farooq, and K. Saleem, “Role of Internet of things in diabetes healthcare: Network infrastructure, taxonomy, challenges, and security model,” Digit. Heal., 2023, doi: 10.1177/20552076231179056. DOI: https://doi.org/10.1177/20552076231179056

M. S. Arora, Rajeev, Sheetal Gera, “Impact of Cloud Computing Services and Application in Healthcare Sector and to provide improved quality patient care,” IEEE Int. Conf. Cloud Comput. Emerg. Mark. (CCEM), 2021.

S. Bauskar and S. Clarita, “AN ANALYSIS: EARLY DIAGNOSIS AND CLASSIFICATION OF PARKINSON’S DISEASE USING MACHINE LEARNING TECHNIQUES,” Int. J. Comput. Eng. Technol., vol. 12, no. 01, pp. 54-66., 2021, doi: 10.5281/zenodo.13836264.

M. Z. Hasan, R. Fink, M. R. Suyambu, M. K. Baskaran, D. James, and J. Gamboa, “Performance evaluation of energy efficient intelligent elevator controllers,” in IEEE International Conference on Electro Information Technology, 2015. doi: 10.1109/EIT.2015.7293320. DOI: https://doi.org/10.1109/EIT.2015.7293320

P. Khare and S. Srivastava, “Enhancing Security with Voice: A Comprehensive Review of AI-Based Biometric Authentication Systems.” 2023.

S. Darchiashvili, R. Kulkarni, R. Tandon, P. Deak, K. L. Nguyen, and P. Jain, “X-chromosome linked genes associated with myeloid cell CNS trafficking contributes to female–male differences in the disease outcome for neuroinflammatory diseases,” NeuroImmune Pharmacol. Ther., vol. 3, no. 2, pp. 71–95, Jun. 2024, doi: 10.1515/nipt-2024-0007. DOI: https://doi.org/10.1515/nipt-2024-0007

Mani Gopalsamy, “An Optimal Artificial Intelligence (AI) technique for cybersecurity threat detection in IoT Networks,” Int. J. Sci. Res. Arch., vol. 7, no. 2, pp. 661–671, Dec. 2022, doi: 10.30574/ijsra.2022.7.2.0235. DOI: https://doi.org/10.30574/ijsra.2022.7.2.0235

S. Bauskar, “AN PREDICTIVE ANALYTICS OR DATA QUALITY ASSESSMENT THROUGH ARTIFICIAL INTELLIGENCE TECHNIQUES,” Int. Res. J. Mod. Eng. Technol. Sci., vol. 06, no. 09, pp. 3330–3337, 2024, doi: https://www.doi.org/10.56726/IRJMETS61568. DOI: https://doi.org/10.2139/ssrn.4980802

J. Thomas, K. V. Vedi, and S. Gupta, “The Effect and Challenges of the Internet of Things (IoT) on the Management of Supply Chains,” Int. J. Res. Anal. Rev., vol. 8, no. 3, pp. 874–879, 2021.

P. Valsalan, N. U. Hasan, U. Farooq, M. Zghaibeh, and I. Baig, “IoT Based Expert System for Diabetes Diagnosis and Insulin Dosage Calculation,” Healthc., 2023, doi: 10.3390/healthcare11010012. DOI: https://doi.org/10.3390/healthcare11010012

A. Mousa, W. Mustafa, and R. B. Marqas, “A Comparative Study of Diabetes Detection Using The Pima Indian Diabetes Database,” J. Univ. Duhok, vol. 26, no. 2, pp. 277–288, 2023, doi: 10.26682/suod.2023.26.2.24. DOI: https://doi.org/10.26682/suod.2023.26.2.24

R. Bishukarma, “The Role of AI in Automated Testing and Monitoring in SaaS Environments,” Int. J. Res. Anal. Rev., vol. 8, no. 2, pp. 846–852, 2021.

V. K. Yarlagadda, “Harnessing Biomedical Signals: A Modern Fusion of Hadoop Infrastructure, AI, and Fuzzy Logic in Healthcare,” Malaysian J. Med. Biol. Res., vol. 8, no. 2, 2021.

K. V. V. and S. G. Jubin Thomas , Piyush Patidar, “An analysis of predictive maintenance strategies in supply chain management,” Int. J. Sci. Res. Arch., vol. 06, no. 01, pp. 308–317, 2022, doi: DOI: https://doi.org/10.30574/ijsra.2022.6.1.0144. DOI: https://doi.org/10.30574/ijsra.2022.6.1.0144

V. V. Kumar, A. Sahoo, S. K. Balasubramanian, and S. Gholston, “Mitigating healthcare supply chain challenges under disaster conditions: a holistic AI-based analysis of social media data,” Int. J. Prod. Res., 2024, doi: 10.1080/00207543.2024.2316884. DOI: https://doi.org/10.1080/00207543.2024.2316884

R. Goyal, “THE ROLE OF BUSINESS ANALYSTS IN INFORMATION MANAGEMENT PROJECTS,” Int. J. Core Eng. Manag., vol. 6, no. 9, pp. 76–86, 2020.

V. S. Thokala, “Integrating Machine Learning into Web Applications for Personalized Content Delivery using Python,” Int. J. Curr. Eng. Technol., vol. 11, no. 06, 2021, doi: https://doi.org/10.14741/ijcet/v.11.6.9.

P. Khare, S. Arora, and S. Gupta, “Integration of Artificial Intelligence (AI) and Machine Learning (ML) into Product Roadmap Planning,” in 2024 First International Conference on Electronics, Communication and Signal Processing (ICECSP), 2024, pp. 1–6. doi: 10.1109/ICECSP61809.2024.10698502. DOI: https://doi.org/10.1109/ICECSP61809.2024.10698502

V. V Kumar, “An interactive product development model in remanufacturing environment : a chaos-based artificial bee colony approach,” Missouri University of Science and Technology, 2014. [Online]. Available: https://scholarsmine.mst.edu/cgi/viewcontent.cgi?article=8243&context=masters_theses

M. Aljaafari, S. E. El-Deep, A. A. Abohany, and S. E. Sorour, “Integrating Innovation in Healthcare: The Evolution of ‘CURA’s’ AI-Driven Virtual Wards for Enhanced Diabetes and Kidney Disease Monitoring,” IEEE Access, vol. 12, pp. 126389–126414, 2024, doi: 10.1109/ACCESS.2024.3451369. DOI: https://doi.org/10.1109/ACCESS.2024.3451369

M. M. Hassan, M. A. M. Billah, M. M. Rahman, S. Zaman, M. M. H. Shakil, and J. H. Angon, “Early Predictive Analytics in Healthcare for Diabetes Prediction Using Machine Learning Approach,” in 2021 12th International Conference on Computing Communication and Networking Technologies, ICCCNT 2021, 2021. doi: 10.1109/ICCCNT51525.2021.9579799. DOI: https://doi.org/10.1109/ICCCNT51525.2021.9579799

C. S. Ganesh, R. S. Kishore, K. V. Goud, B. Kethireddy, S. K. Rout, and S. R. Reddy, “Data-Driven Disease Prediction and Lifestyle Monitoring System,” in 2024 1st International Conference on Cognitive, Green and Ubiquitous Computing (IC-CGU), 2024, pp. 1–8. doi: 10.1109/IC-CGU58078.2024.10530759. DOI: https://doi.org/10.1109/IC-CGU58078.2024.10530759

D. Baswaraj, C. V. V. N. Raju, P. C. S. Reddy, A. Kiran, M. K. Shaik, and D. A. Kumar, “An Efficient Proposal for Deep Learning-Based Diabetes Prediction,” in 2024 Second International Conference on Networks, Multimedia and Information Technology (NMITCON), 2024, pp. 1–6. doi: 10.1109/NMITCON62075.2024.10698948. DOI: https://doi.org/10.1109/NMITCON62075.2024.10698948

M. Narasimharao, B. Swain, P. P. Nayak, and S. Bhuyan, “Performance Evaluation of a Remote Diabetes Healthcare Disease Prediction Framework Using Machine Learning Paradigm for e-health Services,” in 2nd Odisha International Conference on Electrical Power Engineering, Communication and Computing Technology, ODICON 2022, 2022. doi: 10.1109/ODICON54453.2022.10010258. DOI: https://doi.org/10.1109/ODICON54453.2022.10010258

S. Bauskar, “A Review on Database Security Challenges in Cloud Computing Environment,” Int. J. Comput. Eng. Technol., vol. 15, pp. 842–852, 2024, doi: 10.5281/zenodo.13922361. DOI: https://doi.org/10.2139/ssrn.4988780

A. P. A. Singh, “STRATEGIC APPROACHES TO MATERIALS DATA COLLECTION AND INVENTORY MANAGEMENT,” Int. J. Bus. Quant. Econ. Appl. Manag. Res., vol. 7, no. 5, 2022.

A. Goyal, “Scaling Agile Practices with Quantum Computing for Multi-Vendor Engineering Solutions in Global Markets,” Int. J. Curr. Eng. Technol., vol. 12, no. 06, 2022, doi: : https://doi.org/10.14741/ijcet/v.12.6.10.

M. Gopalsamy, “Scalable Anomaly Detection Frameworks for Network Traffic Analysis in cybersecurity using Machine Learning Approaches,” Int. J. Curr. Eng. Technol., vol. 12, no. 06, pp. 549–556, 2022, doi: : https://doi.org/10.14741/ijcet/v.12.6.9.

K. Patel, “A review on cloud computing-based quality assurance : Challenges , opportunities , and best practices,” Int. J. Sci. Res. Arch., vol. 13, no. 01, pp. 796–805, 2024. DOI: https://doi.org/10.30574/ijsra.2024.13.1.1693

R. K. Arora, A. Tiwari, and Mohd.Muqeem, “Advanced Blockchain-Enabled Deep Quantum Computing Model for Secured Machine-to-Machine Communication.” Sep. 2024. doi: 10.21203/rs.3.rs-5165842/v1. DOI: https://doi.org/10.21203/rs.3.rs-5165842/v1

A. Kumar, S. Dodda, N. Kamuni, and R. K. Arora, “Unveiling the Impact of Macroeconomic Policies: A Double Machine Learning Approach to Analyzing Interest Rate Effects on Financial Markets,” 2024 3rd Int. Conf. Artif. Intell. Internet Things, pp. 1–6, Mar. 2024, doi: 10.1109/AIIoT58432.2024.10574726. DOI: https://doi.org/10.1109/AIIoT58432.2024.10574726

Sahil Arora and Pranav Khare, “AI/ML-Enabled Optimization of Edge Infrastructure: Enhancing Performance and Security,” Int. J. Adv. Res. Sci. Commun. Technol., vol. 6, no. 1, pp. 1046–1053, 2024, doi: 10.48175/568. DOI: https://doi.org/10.48175/568

A. S. Ramakrishna Garine, Rajeev Arora, Anoop Kumar, “Advanced Machine Learning for Analyzing and Mitigating Global Supply Chain Disruptions during COVID-19,” SSRN, pp. 1–6, 2020.

S. Bauskar, “BUSINESS ANALYTICS IN ENTERPRISE SYSTEM BASED ON APPLICATION OF ARTIFICIAL INTELLIGENCE,” Int. Res. J. Mod. Eng. Technol. Sci., vol. 04, no. 01, pp. 1861–1870, 2022, doi: DOI : https://www.doi.org/10.56726/IRJMETS18127.

S. R. Bauskar and S. Clarita, “Evaluation of Deep Learning for the Diagnosis of Leukemia Blood Cancer,” Int. J. Adv. Res. Eng. Technol., vol. 11, no. 3, pp. 661–672, 2020, doi: https://iaeme.com/Home/issue/IJARET?Volume=11&Issue=3.

H. Sinha, “A Comprehensive Study on Air Quality Detection Using ML Algorithms,” J. Emerg. Technol. Innov. Res. www.jetir.org, vol. 11, no. 9, pp. b116–b122, 2024.

R. Arora, S. Gera, and M. Saxena, “Mitigating Security Risks on Privacy of Sensitive Data used in Cloud-based ERP Applications,” in 2021 8th International Conference on Computing for Sustainable Global Development (INDIACom), 2021, pp. 458–463.

R. Goyal, “EXPLORING THE PERFORMANCE OF MACHINE LEARNING MODELS FOR CLASSIFICATION AND IDENTIFICATION OF FRAUDULENT INSURANCE CLAIMS,” Int. J. Core Eng. Manag., vol. 7, no. 10, 2024.

K. Patel, “AN ANALYSIS OF QUALITY ASSURANCE FOR BUSINESS INTELLIGENCE PROCESS IN EDUCATION SECTOR,” IJNRD - Int. J. Nov. Res. Dev., vol. 9, no. 9, pp. a884–a896, 2024.

A. P. A. S. and N. Gameti, “Digital Twins in Manufacturing: A Survey of Current Practices and Future Trends,” Int. J. Sci. Res. Arch., vol. 13, no. 1, pp. 1240–1250, 2024. DOI: https://doi.org/10.30574/ijsra.2024.13.1.1705

G. Swapna, K. P. Soman, and R. Vinayakumar, “Automated detection of diabetes using CNN and CNN-LSTM network and heart rate signals,” in Procedia Computer Science, 2018. doi: 10.1016/j.procs.2018.05.041. DOI: https://doi.org/10.1016/j.procs.2018.05.041

R. Tandon, “Face mask detection model based on deep CNN techniques using AWS,” Int. J. Eng. Res. Appl., vol. 13, no. 5, pp. 12–19, 2023.

M. R. S. and P. K. Vishwakarma, “An Efficient Machine Learning Based Solutions for Renewable Energy System,” Int. J. Res. Anal. Rev., vol. 9, no. 4, pp. 951–958, 2022.

M. R. Kishore Mullangi, Vamsi Krishna Yarlagadda, Niravkumar Dhameliya, “Integrating AI and Reciprocal Symmetry in Financial Management: A Pathway to Enhanced Decision-Making,” Int. J. Reciprocal Symmetry Theor. Phys., vol. 5, no. 1, pp. 42–52, 2018.

K. Ullah et al., “Short-Term Load Forecasting: A Comprehensive Review and Simulation Study with CNN-LSTM Hybrids Approach,” IEEE Access, vol. 12, no. July, pp. 111858–111881, 2024, doi: 10.1109/ACCESS.2024.3440631. DOI: https://doi.org/10.1109/ACCESS.2024.3440631

H. Sinha, “Advanced Deep Learning Techniques for Image Classification of Plant Leaf Disease,” J. Emerg. Technol. Innov. Res. www.jetir.org, vol. 11, no. 9, pp. b107–b113, 2024.

Ramesh Bishukarma, “Privacy-preserving based encryption techniques for securing data in cloud computing environments,” Int. J. Sci. Res. Arch., vol. 9, no. 2, pp. 1014–1025, Aug. 2023, doi: 10.30574/ijsra.2023.9.2.0441. DOI: https://doi.org/10.30574/ijsra.2023.9.2.0441

R. Goyal, “THE ROLE OF REQUIREMENT GATHERING IN AGILE SOFTWARE DEVELOPMENT: STRATEGIES FOR SUCCESS AND CHALLENGES,” Int. J. Core Eng. Manag., vol. 6, no. 12, pp. 142–152, 2021.

Pranav Khare and Shristi Srivastava, “Data-driven product marketing strategies: An in-depth analysis of machine learning applications,” Int. J. Sci. Res. Arch., vol. 10, no. 2, pp. 1185–1197, Dec. 2023, doi: 10.30574/ijsra.2023.10.2.0933. DOI: https://doi.org/10.30574/ijsra.2023.10.2.0933

H. Sinha, “Predicting Employee Performance in Business Environments Using Effective Machine Learning Models,” IJNRD - Int. J. Nov. Res. Dev., vol. 9, no. 9, pp. a875–a881, 2024.

U. M. Faustin and B. Zou, “An Improved Homogeneous Ensemble Technique for Early Accurate Detection of Type 2 Diabetes Mellitus (T2DM),” Computation, vol. 10, no. 7, 2022, doi: 10.3390/computation10070104. DOI: https://doi.org/10.3390/computation10070104

H. Salem, M. Y. Shams, O. M. Elzeki, M. A. Elfattah, J. F. Al‐amri, and S. Elnazer, “Fine‐Tuning Fuzzy KNN Classifier Based on Uncertainty Membership for the Medical Diagnosis of Diabetes,” Appl. Sci., vol. 12, no. 3, pp. 1–26, 2022, doi: 10.3390/app12030950. DOI: https://doi.org/10.3390/app12030950

B. J. Kim, “Machine Learning Applications in Diabetes Diagnosis: Optimizing Predictive Models,” Nanotechnol. Perceptions, vol. 20, no. S3, pp. 611–626, 2024, doi: 10.62441/nano-ntp.v20iS3.46. DOI: https://doi.org/10.62441/nano-ntp.v20iS3.46

Downloads

Published

26-12-2024

Issue

Section

Research Articles

Similar Articles

1-10 of 401

You may also start an advanced similarity search for this article.