Interpreting Federated Learning (FL) Models on Edge Devices by Enhancing Model Explainability with Computational Geometry and Advanced Database Architectures

Authors

  • Lawrence Anebi Enyejo Department of Telecommunications, Enforcement Ancillary and Maintenance, National Broadcasting Commission Headquarters, Aso-Villa, Abuja, Nigeria Author
  • Michael Babatunde Adewoye Department of Computer Science, University of Sunderland, Sunderland, UK Author
  • Uchenna Nneka Ugochukwu Department of Management and Data Analytics, University of North America, Fairfax Virginia, USA Author

DOI:

https://doi.org/10.32628/CSEIT24106185

Keywords:

Federated Learning, Explainable AI, Edge Computing, Computational Geometry, Data Privacy, Model Transparency

Abstract

Federated learning (FL) on edge devices has emerged as a promising approach for decentralized model training, enabling data privacy and efficiency in distributed networks. However, the complexity of these models presents significant challenges in terms of transparency and interpretability, which are critical for trust and accountability in real-world applications. This paper explores the integration of explainable AI techniques to enhance model interpretability within federated learning systems. By incorporating computational geometry, we aim to optimize model structure and decision-making processes, providing clearer insights into how models generate predictions. Additionally, we examine the role of advanced database architectures in managing the complexity of federated learning models on edge devices, ensuring efficient data handling and storage. Together, these approaches contribute to a more transparent, efficient, and scalable framework for federated learning on edge networks, addressing key challenges in both model explainability and performance optimization. This review highlights recent advancements and suggests future directions for research at the intersection of federated learning (FL), edge computing, explainability, and computational techniques.

Downloads

Download data is not yet available.

References

Aboi, E. J. (2024). Religious, ethnic and regional identities in Nigerian politics: a shared interest theory. African Identities, 1-18.

Adadi, A., & Berrada, M. (2018). Peeking inside the black-box: A survey on explainable artificial intelligence (XAI). IEEE Access, 6, 52138-52160. https://doi.org/10.1109/ACCESS.2018.2870052.

Adnan, Q., Kashif, A., Muhammad, A. A., Ala, A., & Junaid, Q., (2022). Collaborative Federated Learning for Healthcare: Multi-Modal COVID-19 Diagnosis at the Edge. https://www.computer.org/csdl/journal/oj/2022/01/09891834/1GF6gQEtzqg

Agarwal, P. K., & Erickson, J. (2020). Geometric range searching and its relatives. Advances in Computational Geometry, 1(1), 1-78. https://doi.org/10.1145/3434168.

Agarwal, P. K., & Sharir, M. (2010). Computational geometry: An introduction to algorithms. Communications of the ACM, 53(1), 97-102. https://doi.org/10.1145/1629175.1629200.

Ajayi, A.A., Igba, E., Soyele, A. D., & Enyejo, J. O. (2024). Enhancing Digital Identity and Financial Security in Decentralized Finance (Defi) through Zero-Knowledge Proofs (ZKPs) and Blockchain Solutions for Regulatory Compliance and Privacy. OCT 2024 |IRE Journals | Volume 8 Issue 4 | ISSN: 2456-8880

Awotiwon, B. O., Enyejo, J. O., Owolabi, F. R. A., Babalola, I. N. O., & Olola, T. M. (2024). Addressing Supply Chain Inefficiencies to Enhance Competitive Advantage in Low-Cost Carriers (LCCs) through Risk Identification and Benchmarking Applied to Air Australasia’s Operational Model. World Journal of Advanced Research and Reviews, 2024, 23(03), 355–370. https://wjarr.com/content/addressing-supply-chain-inefficiencies-enhance-competitive-advantage-low-cost-carriers-lccs

Ayoola, V. B., Idoko, P. I., Danquah, E. O., Ukpoju, E. A., Obasa, J., Otakwu, A. & Enyejo, J. O. (2024). Optimizing Construction Management and Workflow Integration through Autonomous Robotics for Enhanced Productivity Safety and Precision on Modern Construction Sites. International Journal of Scientific Research and Modern Technology (IJSRMT). Vol 3, Issue 10, 2024. https://www.ijsrmt.com/index.php/ijsrmt/article/view/56

Balogun, T. K., Enyejo, J. O., Ahmadu, E. O., Akpovino, C. U., Olola, T. M., & Oloba, B. L. (2024). The Psychological Toll of Nuclear Proliferation and Mass Shootings in the U.S. and How Mental Health Advocacy Can Balance National Security with Civil Liberties. IRE Journals, Volume 8 Issue 4, ISSN: 2456-8880.

Bashiru, O., Ochem, C., Enyejo, L. A., Manuel, H. N. N., & Adeoye, T. O. (2024). The crucial role of renewable energy in achieving the sustainable development goals for cleaner energy. *Global Journal of Engineering and Technology Advances*, 19(03), 011-036. https://doi.org/10.30574/gjeta.2024.19.3.0099

Bonawitz, K., Eichner, H., Grieskamp, W., Huba, D., Ingerman, A., Ivanov, V., Kiddon, C., Konečný, J., Mazzocchi, S., McMahan, H. B., Van Overveldt, T., Petrou, D., Ramage, D., & Roselander, J. (2019). Towards federated learning at scale: System design. Proceedings of Machine Learning and Systems, 1, 374-388. https://mlsys.org/

Chaudhuri, S., & Narasayya, V. R. (2011). An overview of query optimization in relational systems. Proceedings of the VLDB Endowment, 3(1-2), 34-45. https://doi.org/10.14778/1920841.1920857.

Doshi-Velez, F., & Kim, B. (2017). Towards a rigor ous science of interpretable machine learning. arXiv preprint arXiv:1702.08608. https://doi.org/10.48550/arXiv.1702.08608.

Ebenibo, L., Enyejo, J. O., Addo, G., & Olola, T. M. (2024). Evaluating the Sufficiency of the data protection act 2023 in the age of Artificial Intelligence (AI): A comparative case study of Nigeria and the USA. International Journal of Scholarly Research and Reviews, 2024, 05(01), 088–107. https://srrjournals.com/ijsrr/content/evaluating-sufficiency-data-protection-act-2023-age-artificial-intelligence-ai-comparative

Edelsbrunner, H., & Harer, J. (2010). Computational topology: An introduction. American Mathematical Society, 20(1), 85-87. https://doi.org/10.1090/mbk/069.

Enyejo, J. O., Adeyemi, A. F., Olola, T. M., Igba, E & Obani, O. Q. (2024). Resilience in supply chains: How technology is helping USA companies navigate disruptions. Magna Scientia Advanced Research and Reviews, 2024, 11(02), 261–277. https://doi.org/10.30574/msarr.2024.11.2.0129

Enyejo, J. O., Babalola, I. N. O., Owolabi, F. R. A. Adeyemi, A. F., Osam-Nunoo, G., & Ogwuche, A. O. (2024). Data-driven digital marketing and battery supply chain optimization in the battery powered aircraft industry through case studies of Rolls-Royce’s ACCEL and Airbus's E-Fan X Projects. International Journal of Scholarly Research and Reviews, 2024, 05(02), 001–020. https://doi.org/10.56781/ijsrr.2024.5.2.0045

Enyejo, J. O., Obani, O. Q, Afolabi, O. Igba, E. & Ibokette, A. I., (2024). Effect of Augmented Reality (AR) and Virtual Reality (VR) experiences on customer engagement and purchase behavior in retail stores. Magna Scientia Advanced Research and Reviews, 2024, 11(02), 132–150. https://magnascientiapub.com/journals/msarr/sites/default/files/MSARR-2024-0116.pdf

Guidotti, R., Monreale, A., Turini, F., Pedreschi, D., Giannotti, F., & Ruggieri, S. (2019). A survey of methods for explaining black-box models. ACM Computing Surveys (CSUR), 51(5), 1-42. https://doi.org/10.1145/3236009.

Idoko, I. P., Ijiga, O. M., Enyejo, L. A., Akoh, O., & Ileanaju, S. (2024). Harmonizing the voices of AI: Exploring generative music models, voice cloning, and voice transfer for creative expression.

Idoko, I. P., Ijiga, O. M., Enyejo, L. A., Akoh, O., & Isenyo, G. (2024). Integrating superhumans and synthetic humans into the Internet of Things (IoT) and ubiquitous computing: Emerging AI applications and their relevance in the US context. *Global Journal of Engineering and Technology Advances*, 19(01), 006-036.

Idoko, I. P., Ijiga, O. M., Enyejo, L. A., Ugbane, S. I., Akoh, O., & Odeyemi, M. O. (2024). Exploring the potential of Elon Musk's proposed quantum AI: A comprehensive analysis and implications. *Global Journal of Engineering and Technology Advances*, 18(3), 048-065.

Idoko, I. P., Ijiga, O. M., Harry, K. D., Ezebuka, C. C., Ukatu, I. E., & Peace, A. E. (2024). Renewable energy policies: A comparative analysis of Nigeria and the USA.

Idoko, J. E., Bashiru, O., Olola, T. M., Enyejo, L. A., & Manuel, H. N. (2024). Mechanical properties and biodegradability of crab shell-derived exoskeletons in orthopedic implant design. *World Journal of Biology Pharmacy and Health Sciences*, 18(03), 116-131. https://doi.org/10.30574/wjbphs.2024.18.3.0339

Igba, E., Adeyemi, A. F., Enyejo, J. O., Ijiga, A. C., Amidu, G., & Addo, G. (2024). Optimizing Business loan and Credit Experiences through AI powered ChatBot Integration in financial services. Finance & Accounting Research Journal, P-ISSN: 2708-633X, E-ISSN: 2708, Volume 6, Issue 8, P.No. 1436-1458, August 2024. DOI:10.51594/farj.v6i8.1406

Igba, E., Danquah, E. O., Ukpoju, E. A., Obasa, J., Olola, T. M., & Enyejo, J. O. (2024). Use of Building Information Modeling (BIM) to Improve Construction Management in the USA. World Journal of Advanced Research and Reviews, 2024, 23(03), 1799–1813. https://wjarr.com/content/use-building-information-modeling-bim-improve-construction-management-usa

Ijiga, A. C., Aboi, E. J., Idoko, P. I., Enyejo, L. A., & Odeyemi, M. O. (2024). Collaborative innovations in Artificial Intelligence (AI): Partnering with leading U.S. tech firms to combat human trafficking. Global Journal of Engineering and Technology Advances, 2024,18(03), 106-123. https://gjeta.com/sites/default/files/GJETA-2024-0046.pdf

Ijiga, A. C., Abutu E. P., Idoko, P. I., Ezebuka, C. I., Harry, K. D., Ukatu, I. E., & Agbo, D. O. (2024). Technological innovations in mitigating winter health challenges in New York City, USA. International Journal of Science and Research Archive, 2024, 11(01), 535–551.· https://ijsra.net/sites/default/files/IJSRA-2024-0078.pdf

Ijiga, A. C., Abutu, E. P., Idoko, P. I., Agbo, D. O., Harry, K. D., Ezebuka, C. I., & Umama, E. E. (2024). Ethical considerations in implementing generative AI for healthcare supply chain optimization: A cross-country analysis across India, the United Kingdom, and the United States of America. International Journal of Biological and Pharmaceutical Sciences Archive, 2024, 07(01), 048–063. https://ijbpsa.com/sites/default/files/IJBPSA-2024-0015.pdf

Ijiga, A. C., Balogun, T. K., Ahmadu, E. O., Klu, E., Olola, T. M., & Addo, G. (2024). The role of the United States in shaping youth mental health advocacy and suicide prevention through foreign policy and media in conflict zones. Magna Scientia Advanced Research and Reviews, 2024, 12(01), 202–218. https://magnascientiapub.com/journals/msarr/sites/default/files/MSARR-2024-0174.pdf

Ijiga, A. C., Enyejo, L. A., Odeyemi, M. O., Olatunde, T. I., Olajide, F. I & Daniel, D. O. (2024). Integrating community-based partnerships for enhanced health outcomes: A collaborative model with healthcare providers, clinics, and pharmacies across the USA. Open Access Research Journal of Biology and Pharmacy, 2024, 10(02), 081–104. https://oarjbp.com/content/integrating-community-based-partnerships-enhanced-health-outcomes-collaborative-model

Ijiga, A. C., Olola, T. M., Enyejo, L. A., Akpa, F. A., Olatunde, T. I., & Olajide, F. I. (2024). Advanced surveillance and detection systems using deep learning to combat human trafficking. Magna Scientia Advanced Research and Reviews, 2024, 11(01), 267–286. https://magnascientiapub.com/journals/msarr/sites/default/files/MSARR-2024-0091.pdf.

Ijiga, A. C., Olola, T. M., Enyejo, L. A., Akpa, F. A., Olatunde, T. I., & Olajide, F. I. (2024). Advanced surveillance and detection systems using deep learning to combat human trafficking. Magna Scientia Advanced Research and Reviews, 2024, 11(01), 267–286. https://magnascientiapub.com/journals/msarr/sites/default/files/MSARR-2024-0091.pdf.

Ijiga, O. M., Idoko, I. P., Ebiega, G. I., Olajide, F. I., Olatunde, T. I., & Ukaegbu, C. (2024). Harnessing adversarial machine learning for advanced threat detection: AI-driven strategies in cybersecurity risk assessment and fraud prevention.

Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A. N., Charles, Z., Cormode, G., Cummings, R., & D’Oliveira, R. G. (2021). Advances and open problems in federated learning. Foundations and Trends® in Machine Learning, 14(1), 1-210. https://doi.org/10.1561/2200000083.

Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A. N., Charles, Z., Cormode, G., Cummings, R., & D'Oliveira, R. G. (2021). Advances and open problems in federated learning. Foundations and Trends® in Machine Learning, 14(1), 1-210. https://doi.org/10.1561/2200000083.

Li, L., Shi, D., Hou, R., Li, H., Pan, M., & Han, Z. (2021). To talk or to work: Flexible communication compression for energy efficient federated learning over heterogeneous mobile edge devices. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE.

Li, T., Sahu, A. K., Talwalkar, A., & Smith, V. (2020). Federated learning: Challenges, methods, and future directions. IEEE Signal Processing Magazine, 37(3), 50-60. https://doi.org/10.1109/MSP.2020.2975749.

Lim, W. Y. B., Luong, N. C., Hoang, D. T., Jiao, Y., Liang, Y. C., Yang, Q., Niyato, D., & Miao, C. (2020). Federated learning in mobile edge networks: A comprehensive survey. IEEE Communications Surveys & Tutorials, 22(3), 2031-2063. https://doi.org/10.1109/COMST.2020.2997476.

Liu, Y., Yu, X., Liu, J., Anwar, M. W., & Peng, Y. (2021). Trustworthy federated learning: A survey. ACM Computing Surveys (CSUR), 54(6), 1-36. https://doi.org/10.1145/3450288.

Moniruzzaman, A. B. M., & Hossain, S. A. (2013). NoSQL database: New era of databases for big data analytics—Classification, characteristics, and comparison. International Journal of Database Theory and Application, 6(4), 1-14. https://doi.org/10.14257/ijdta.2013.6.4.01.

Okabe, A., Boots, B., Sugihara, K., & Chiu, S. N. (2000). Spatial tessellations: Concepts and applications of Voronoi diagrams. Wiley. https://doi.org/10.1002/9780470317013.

Okeke, R. O., Ibokette, A. I., Ijiga, O. M., Enyejo, L. A., Ebiega, G. I., & Olumubo, O. M. (2024). The reliability assessment of power transformers. *Engineering Science & Technology Journal*, 5(4), 1149-1172.

Okeke, R. O., Ibokette, A. I., Ijiga, O. M., Enyejo, L. A., Ebiega, G. I., & Olumubo, O. M. (2024). The reliability assessment of power transformers. *Engineering Science & Technology Journal*, 5(4), 1149-1172.

Otten, N. V. (2024). Explainable AI Made Simple: 5 Techniques, Tools & How to Tutorials https://spotintelligence.com/2024/01/15/explainable-ai/

Roman, R., Lopez, J., & Mambo, M. (2018). Mobile edge computing, fog et al.: A survey and analysis of security threats and challenges. Future Generation Computer Systems, 78, 680-698. https://doi.org/10.1016/j.future.2016.11.009.

Sanjeev, B. 2024. Generative AI in Ultrasound: Revolutionizing Radiology https://www.linkedin.com/pulse/generative-ai-ultrasound-revolutionizing-radiology-sanjeev-bora-chrqc

Saranti, A., Pfeifer, B., Gollob, C., Stampfer, K., & Holzinger, A. (2024). From 3D point‐cloud data to explainable geometric deep learning: State‐of‐the‐art and future challenges. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, e1554.

Shi, W., Cao, J., Zhang, Q., Li, Y., & Xu, L. (2016). Edge computing: Vision and challenges. IEEE Internet of Things Journal, 3(5), 637-646. https://doi.org/10.1109/JIOT.2016.2579198.

Theyab, A., Bader, A., & Mohammad, I. (2024). Enhancing Cybersecurity in Healthcare: Evaluating Ensemble Learning Models for Intrusion Detection in the Internet of Medical Things. https://www.mdpi.com/1424-8220/24/18/5937

Tonekaboni, S., Joshi, S., McCradden, M. D., & Goldenberg, A. (2020). What clinicians want: Contextualizing explainable machine learning for clinical end use. Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, 29, 1-12. https://doi.org/10.1145/3287560.3287591.

Veale, M., & Binns, R. (2017). Fairer machine learning in the real world: Mitigating discrimination without collecting sensitive data. Big Data & Society, 4(2), 1-17. https://doi.org/10.1177/2053951717743530.

Yang, Q., Liu, Y., Chen, T., & Tong, Y. (2019). Federated machine learning: Concept and applications. ACM Transactions on Intelligent Systems and Technology (TIST), 10(2), 1-19. https://doi.org/10.1145/3298981.

Zhao, Y., Li, M., Lai, L., & Suda, N. (2021). Federated learning with non-IID data. IEEE Transactions on Neural Networks and Learning Systems, 32(8), 3285-3296. https://doi.org/10.1109/TNNLS.2020.3015953.

Zhu, L., Liu, Z., & Han, S. (2020). Deep leakage from gradients. Advances in Neural Information Processing Systems, 33, 4832-4842. https://doi.org/10.48550/arXiv.1906.08935.

Jagdish Jangid , " Efficient Training Data Caching for Deep Learning in Edge Computing Networks" International Journal of Scientific Research in Computer Science, Engineering and Information Technology(IJSRCSEIT), ISSN : 2456-3307, Volume 6, Issue 5, pp.337-362, September-October-2020. Available at doi : https://doi.org/10.32628/CSEIT20631113

Downloads

Published

08-11-2024

Issue

Section

Research Articles