Federated Learning Approaches for Privacy-Preserving Threat Detection in Smart Home IoT Environments

Authors

  • Chima Nwankwo Idika Department of Computer Science, Prairie View A & M University, Prairie View Texas, USA Author
  • Edward Oziegbe Salami Department of Engineering, Westcliff University, Irvine, California, USA Author

DOI:

https://doi.org/10.32628/CSEIT24113369

Keywords:

Federated Learning, Smart Home IoT, Privacy-Preserving Threat Detection, Cybersecurity, Edge Computing

Abstract

Smart home Internet of Things (IoT) environments have become increasingly pervasive, offering convenience and automation while simultaneously introducing new cybersecurity vulnerabilities. Traditional centralized machine learning approaches for threat detection rely on aggregating sensitive user data into cloud servers, raising significant concerns regarding privacy, data security, and regulatory compliance. Federated learning (FL) has emerged as a promising paradigm that enables collaborative model training across distributed IoT devices without sharing raw data, thus preserving privacy while maintaining effective threat detection. This review paper explores the application of FL in privacy-preserving threat detection within smart home IoT systems, analyzing its strengths, limitations, and future potential. The discussion highlights how FL mitigates risks such as data leakage, adversarial attacks, and model inversion while ensuring scalability in heterogeneous device ecosystems. Moreover, the review examines existing frameworks, comparative case studies, and integration with complementary technologies like blockchain and differential privacy to enhance robustness. Challenges such as communication overhead, resource constraints, and model poisoning attacks are also critically addressed. By synthesizing recent advancements and identifying open research gaps, this paper provides a roadmap for leveraging FL in developing secure, scalable, and privacy-preserving threat detection systems for smart homes.

📊 Article Downloads

References

Ajayi, A. A., Igba, E., Soyele, A. D., & Enyejo, J. O. (2024). Quantum Cryptography and Blockchain-Based Social Media Platforms as a Dual Approach to Securing Financial Transactions in CBDCs and Combating Misinformation in U.S. Elections. International Journal of Innovative Science and Research Technology. Volume 9, Issue 10, Oct.– 2024 ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24OCT1697. DOI: https://doi.org/10.38124/ijisrt/IJISRT24OCT1697

Alamer, A., & colleagues. (2024). Privacy-preserving federated learning with a secure collaborative framework. Journal of Computer and System Sciences. DOI: https://doi.org/10.1016/j.iot.2023.101015

Asiri, M., Khemakhem, M. A., Alhebshi, R. M., Alsulami, B. S., & Eassa, F. E. (2025). RPFL: A reliable and privacy-preserving framework for federated learning-based IoT malware detection. Electronics. DOI: https://doi.org/10.3390/electronics14061089

Atalor, S. I. (2019). Federated Learning Architectures for Predicting Adverse Drug Events in Oncology Without Compromising Patient Privacy ICONIC RESEARCH AND ENGINEERING JOURNALS JUN 2019 | IRE Journals | Volume 2 Issue 12 | ISSN: 2456-8880

Atalor, S. I. (2022). Blockchain-Enabled Pharmacovigilance Infrastructure for National Cancer Registries. International Journal of Scientific Research and Modern Technology, 1(1), 50–64. https://doi.org/10.38124/ijsrmt.v1i1.493 DOI: https://doi.org/10.38124/ijsrmt.v1i1.493

Atalor, S. I. (2022). Data-Driven Cheminformatics Models for Predicting Bioactivity of Natural Compounds in Oncology. International Journal of Scientific Research and Modern Technology, 1(1), 65–76. https://doi.org/10.38124/ijsrmt.v1i1.496 DOI: https://doi.org/10.38124/ijsrmt.v1i1.496

Atalor, S. I., Ijiga, O. M., & Enyejo, J. O. (2023). Harnessing Quantum Molecular Simulation for Accelerated Cancer Drug Screening. International Journal of Scientific Research and Modern Technology, 2(1), 1–18. https://doi.org/10.38124/ijsrmt.v2i1.502 DOI: https://doi.org/10.38124/ijsrmt.v2i1.502

Atalor, S. I., Raphael, F. O. & Enyejo, J. O. (2023). Wearable Biosensor Integration for Remote Chemotherapy Monitoring in Decentralized Cancer Care Models. International Journal of Scientific Research in Science and Technology Volume 10, Issue 3 (www.ijsrst.com) doi : https://doi.org/10.32628/IJSRST23113269 DOI: https://doi.org/10.32628/IJSRST23113269

Azonuche, T. I., & Enyejo, J. O. (2024). Agile Transformation in Public Sector IT Projects Using Lean-Agile Change Management and Enterprise Architecture Alignment. International Journal of Scientific Research and Modern Technology, 3(8), 21–39. https://doi.org/10.38124/ijsrmt.v3i8.432 DOI: https://doi.org/10.38124/ijsrmt.v3i8.432

Azonuche, T. I., & Enyejo, J. O. (2024). Evaluating the Impact of Agile Scaling Frameworks on Productivity and Quality in Large-Scale Fintech Software Development. International Journal of Scientific Research and Modern Technology, 3(6), 57–69. https://doi.org/10.38124/ijsrmt.v3i6.449 DOI: https://doi.org/10.38124/ijsrmt.v3i6.449

Azonuche, T. I., & Enyejo, J. O. (2024). Exploring AI-Powered Sprint Planning Optimization Using Machine Learning for Dynamic Backlog Prioritization and Risk Mitigation. International Journal of Scientific Research and Modern Technology, 3(8), 40–57. https://doi.org/10.38124/ijsrmt.v3i8.448. DOI: https://doi.org/10.38124/ijsrmt.v3i8.448

Belarbi, O., Spyridopoulos, T., Anthi, E., Mavromatis, I., Carnelli, P., & Khan, A. (2023). Federated deep learning for intrusion detection in IoT networks. arXiv preprint. DOI: https://doi.org/10.1109/GLOBECOM54140.2023.10437860

Belenguer, A., Navaridas, J., & Pascual, J. A. (2022). A review of Federated Learning in Intrusion Detection Systems for IoT. arXiv preprint. DOI: https://doi.org/10.2139/ssrn.4261807

Chakraborty, A., Islam, M., Shahriyar, F., Islam, S., Zaman, H. U., & Hasan, M. (2023). Smart home system: a comprehensive review. Journal of Electrical and Computer Engineering, 2023(1), 7616683. DOI: https://doi.org/10.1155/2023/7616683

Ciekanowski, Z., Gruchelski, M., Nowicka, J., Żurawski, S., & Pauliuchuk, Y. (2023). Cyberspace as a Source of New Threats to the Security of the European Union. DOI: https://doi.org/10.35808/ersj/3249

Domínguez-Bolaño, T., Campos, O., Barral, V., Escudero, C. J., & García-Naya, J. A. (2022). An overview of IoT architectures, technologies, and existing open-source projects. Internet of Things, 20, 100626. DOI: https://doi.org/10.1016/j.iot.2022.100626

Dritsas, E., et al. (2025). Federated Learning for IoT: A Survey of Techniques. Sensors (Basel). DOI: https://doi.org/10.3390/jsan14010009

Enyejo, J. O., Fajana, O. P., Jok, I. S., Ihejirika, C. J., Awotiwon, B. O., & Olola, T. M. (2024). Digital Twin Technology, Predictive Analytics, and Sustainable Project Management in Global Supply Chains for Risk Mitigation, Optimization, and Carbon Footprint Reduction through Green Initiatives. International Journal of Innovative Science and Research Technology, Volume 9, Issue 11, November– 2024. ISSN No:-2456-2165. https://doi.org/10.38124/ijisrt/IJISRT24NOV1344 DOI: https://doi.org/10.38124/ijisrt/IJISRT24NOV1344

Ganapathy, G., et al. (2024). A blockchain-based federated deep learning model for… ScienceDirect.

Hassan, A., Nizam-Uddin, N., Quddus, A., Hassan, S. R., Rehman, A. U., & Bharany, S. (2024). Navigating IoT Security: Insights into Architecture, Key Security Features, Attacks, Current Challenges and AI-Driven Solutions Shaping the Future of Connectivity. Computers, Materials & Continua, 81(3). DOI: https://doi.org/10.32604/cmc.2024.057877

Idika, C. N. (2023). Quantum Resistant Cryptographic Protocols for Securing Autonomous Vehicle to Vehicle (V2V) Communication Networks International Journal of Scientific Research in Computer Science, Engineering and Information Technology Volume 10, Issue 1 doi : https://doi.org/10.32628/CSEIT2391547 DOI: https://doi.org/10.32628/CSEIT2391547

Igba E., Ihimoyan, M. K., Awotinwo, B., & Apampa, A. K. (2024). Integrating BERT, GPT, Prophet Algorithm, and Finance Investment Strategies for Enhanced Predictive Modeling and Trend Analysis in Blockchain Technology. Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., November-December-2024, 10 (6) : 1620-1645.https://doi.org/10.32628/CSEIT241061214 DOI: https://doi.org/10.32628/CSEIT241061214

Ijiga, A. C., Abutu E. P., Idoko, P. I., Ezebuka, C. I., Harry, K. D., Ukatu, I. E., & Agbo, D. O. (2024). Technological innovations in mitigating winter health challenges in New York City, USA. International Journal of Science and Research Archive, 2024, 11(01), 535–551.• https://ijsra.net/sites/default/files/IJSRA-2024-0078.pdf DOI: https://doi.org/10.30574/ijsra.2024.11.1.0078

Ijiga, A. C., Abutu, E. P., Idoko, P. I., Agbo, D. O., Harry, K. D., Ezebuka, C. I., & Umama, E. E. (2024). Ethical considerations in implementing generative AI for healthcare supply chain optimization: A cross-country analysis across India, the United Kingdom, and the United States of America. International Journal of Biological and Pharmaceutical Sciences Archive, 2024, 07(01), 048–063. https://ijbpsa.com/sites/default/files/IJBPSA-2024-0015.pdf DOI: https://doi.org/10.53771/ijbpsa.2024.7.1.0015

Ijiga, A. C., Enyejo, L. A., Odeyemi, M. O., Olatunde, T. I., Olajide, F. I & Daniel, D. O. (2024). Integrating community-based partnerships for enhanced health outcomes: A collaborative model with healthcare providers, clinics, and pharmacies across the USA. Open Access Research Journal of Biology and Pharmacy, 2024, 10(02), 081–104. https://oarjbp.com/content/integrating-community-based-partnerships-enhanced-health-outcomes-collaborative-model DOI: https://doi.org/10.53022/oarjbp.2024.10.2.0015

Ijiga, A. C., Olola, T. M., Enyejo, L. A., Akpa, F. A., Olatunde, T. I., & Olajide, F. I. (2024). Advanced surveillance and detection systems using deep learning to combat human trafficking. Magna Scientia Advanced Research and Reviews, 2024, 11(01), 267–286. https://magnascientiapub.com/journals/msarr/sites/default/files/MSARR-2024-0091.pdf. DOI: https://doi.org/10.30574/msarr.2024.11.1.0091

Ijiga, O. M., Ifenatuora, G. P., & Olateju, M. (2021). Bridging STEM and Cross-Cultural Education: Designing Inclusive Pedagogies for Multilingual Classrooms in Sub Saharan Africa. JUL 2021 | IRE Journals | Volume 5 Issue 1 | ISSN: 2456-8880.

Ijiga, O. M., Ifenatuora, G. P., & Olateju, M. (2021). Digital Storytelling as a Tool for Enhancing STEM Engagement: A Multimedia Approach to Science Communication in K-12 Education. International Journal of Multidisciplinary Research and Growth Evaluation. Volume 2; Issue 5; September-October 2021; Page No. 495-505. https://doi.org/10.54660/.IJMRGE.2021.2.5.495-505 DOI: https://doi.org/10.54660/.IJMRGE.2021.2.5.495-505

Ijiga, O. M., Ifenatuora, G. P., & Olateju, M. (2022). AI-Powered E-Learning Platforms for STEM Education: Evaluating Effectiveness in Low Bandwidth and Remote Learning Environments. International Journal of Scientific Research in Computer Science, Engineering and Information Technology ISSN : 2456-3307 Volume 8, Issue 5 September-October-2022 Page Number : 455-475 doi : https://doi.org/10.32628/IJSRCSEIT DOI: https://doi.org/10.32628/IJSRCSEIT

Ijiga, O. M., Ifenatuora, G. P., & Olateju, M. (2023). STEM-Driven Public Health Literacy : Using Data Visualization and Analytics to Improve Disease Awareness in Secondary Schools. International Journal of Scientific Research in Science and Technology. Volume 10, Issue 4 July-August-2023 Page Number : 773-793. https://doi.org/10.32628/IJSRST

Imoh, P. O. (2023). Impact of Gut Microbiota Modulation on Autism Related Behavioral Outcomes via Metabolomic and Microbiome-Targeted Therapies International Journal of Scientific Research and Modern Technology (IJSRMT) Volume 2, Issue 8, 2023 DOI: https://doi.org/10.38124/ijsrmt.v2i8.494 DOI: https://doi.org/10.38124/ijsrmt.v2i8.494

Imoh, P. O., & Idoko, I. P. (2022). Gene-Environment Interactions and Epigenetic Regulation in Autism Etiology through Multi-Omics Integration and Computational Biology Approaches. International Journal of Scientific Research and Modern Technology, 1(8), 1–16. https://doi.org/10.38124/ijsrmt.v1i8.463 DOI: https://doi.org/10.38124/ijsrmt.v1i8.463

Imoh, P. O., & Idoko, I. P. (2023). Evaluating the Efficacy of Digital Therapeutics and Virtual Reality Interventions in Autism Spectrum Disorder Treatment. International Journal of Scientific Research and Modern Technology, 2(8), 1–16. https://doi.org/10.38124/ijsrmt.v2i8.462 DOI: https://doi.org/10.38124/ijsrmt.v2i8.462

Jayanthi, V. (2023). The Transformative role of AI and IoT in smart homes https://www.bitsathy.ac.in/the-transformative-role-of-ai-and-iot-in-smart-homes/

Kaur, I., & Jadhav, A. J. (2023). Federated Learning in IoT: A Survey from a Resource-Constrained Perspective. In 2023 International Conference on Artificial Intelligence Robotics, Signal and Image Processing (AIRoSIP) (pp. 376-381). IEEE. DOI: https://doi.org/10.1109/AIRoSIP58759.2023.10874004

Li, H., Ge, L., & Tian, L. (2024). Survey: federated learning data security and privacy-preserving in edge-Internet of Things. Artificial Intelligence Review, 57(5), 130. DOI: https://doi.org/10.1007/s10462-024-10774-7

Lianga, J., et al. (2023). A Survey on Federated Learning Poisoning Attacks and Defenses. arXiv Preprint.

Ma, J., Naas, S., Sigg, S., & Lyu, X. (2021). Privacy-preserving federated learning based on multi-key homomorphic encryption. arXiv preprint. DOI: https://doi.org/10.1002/int.22818

Madadi-Barough, S., Ruiz-Blanco, P., Lin, J., Vidal, R., & Gomez, C. (2024). Matter: IoT interoperability for smart homes. arXiv preprint. DOI: https://doi.org/10.1109/MCOM.001.2400274

Magara, T., & Zhou, Y. (2024). Internet of Things (IoT) of Smart Homes: Privacy and Security. Journal of Electrical and Computer Engineering. DOI: https://doi.org/10.1155/2024/7716956

Mughal, F. R., He, J., Das, B., Dharejo, F. A., Zhu, N., Khan, S. B., & Alzahrani, S. (2024). Adaptive federated learning for resource-constrained IoT devices through edge intelligence and multi-edge clustering. Scientific Reports, 14(1), 28746. DOI: https://doi.org/10.1038/s41598-024-78239-z

Nair, A. K. (2023). A robust analysis of adversarial attacks on federated learning. Journal of Information Security and Applications. DOI: https://doi.org/10.1016/j.csi.2023.103723

Nguyen, T. D., Marchal, S., Miettinen, M., Fereidooni, H., Asokan, N., & Sadeghi, A.-R. (2018). DÏoT: A federated self-learning anomaly detection system for IoT. arXiv preprint. DOI: https://doi.org/10.1109/ICDCS.2019.00080

Nobakht, M., et al. (2024). Secure IoT malware detection model with federated learning. Computers & Security. DOI: https://doi.org/10.1016/j.compeleceng.2024.109139

Ononiwu, M., Azonuche, T. I., & Enyejo, J. O. (2023). Exploring Influencer Marketing Among Women Entrepreneurs using Encrypted CRM Analytics and Adaptive Progressive Web App Development. International Journal of Scientific Research and Modern Technology, 2(6), 1–13. https://doi.org/10.38124/ijsrmt.v2i6.562 DOI: https://doi.org/10.38124/ijsrmt.v2i6.562

Ononiwu, M., Azonuche, T. I., Imoh, P. O. & Enyejo, J. O. (2023). Exploring SAFe Framework Adoption for Autism-Centered Remote Engineering with Secure CI/CD and Containerized Microservices Deployment International Journal of Scientific Research in Science and Technology Volume 10, Issue 6 doi : https://doi.org/10.32628/IJSRST DOI: https://doi.org/10.32628/IJSRST

Ononiwu, M., Azonuche, T. I., Imoh, P. O. & Enyejo, J. O. (2024). Evaluating Blockchain Content Monetization Platforms for Autism-Focused Streaming with Cybersecurity and Scalable Microservice Architectures ICONIC RESEARCH AND ENGINEERING JOURNALS Volume 8 Issue 1

Ononiwu, M., Azonuche, T. I., Okoh, O. F., & Enyejo, J. O. (2023). AI-Driven Predictive Analytics for Customer Retention in E-Commerce Platforms using Real-Time Behavioral Tracking. International Journal of Scientific Research and Modern Technology, 2(8), 17–31. https://doi.org/10.38124/ijsrmt.v2i8.561 DOI: https://doi.org/10.38124/ijsrmt.v2i8.561

Papadopoulos, C. (2024). Recent advancements in federated learning: state of the art and future promises. Future Internet. DOI: https://doi.org/10.3390/fi16110415

Popoola, O., Rodrigues, M., Marchang, J., Shenfield, A., Ikpehai, A., & Popoola, J. (2024). A critical literature review of security and privacy in smart home healthcare schemes adopting IoT & blockchain: problems, challenges and solutions. Blockchain: Research and Applications, 5(2), 100178. DOI: https://doi.org/10.1016/j.bcra.2023.100178

Rey, V., Sánchez Sánchez, P. M., Huertas Celdrán, A., Bovet, G., & Jaggi, M. (2021). Federated learning for malware detection in IoT devices. ScienceDirect. DOI: https://doi.org/10.1016/j.comnet.2021.108693

Saeed, N., (2024). Comprehensive review of federated learning challenges. Journal of Big Data. DOI: https://doi.org/10.1186/s40537-025-01195-6

Tayyeh, H. K., et al. (2024). A Differential Privacy approach in Federated Learning. Computers. DOI: https://doi.org/10.3390/computers13110277

Vardakis, G., Hatzivasilis, G., Koutsaki, E., & Papadakis, N. (2024). Review of smart-home security using the internet of things. Electronics, 13(16), 3343. DOI: https://doi.org/10.3390/electronics13163343

Wen, J., Zhang, Z., Lan, Y., Cui, Z., & Zhang, W. (2023). A survey on federated learning: challenges and applications. International Journal of Machine Learning and Cybernetics. DOI: https://doi.org/10.1007/s13042-022-01647-y

Zhang, T., Gao, L., He, C., Zhang, M., Krishnamachari, B., & Avestimehr, S. (2021). Federated Learning for Internet of Things: Applications, Challenges, and Opportunities. arXiv Preprint.

Zhang, T., Gao, L., He, C., Zhang, M., Krishnamachari, B., & Avestimehr, S. (2021). Federated Learning for Internet of Things: Applications, Challenges, and Opportunities. arXiv Preprint. DOI: https://doi.org/10.1109/IOTM.004.2100182

Zhou, S., et al. (2025). Group verifiable secure aggregation for federated learning. Scientific Reports. DOI: https://doi.org/10.1038/s41598-025-94478-0

Downloads

Published

30-10-2024

Issue

Section

Research Articles

How to Cite

[1]
Chima Nwankwo Idika and Edward Oziegbe Salami, “Federated Learning Approaches for Privacy-Preserving Threat Detection in Smart Home IoT Environments”, Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, vol. 10, no. 5, pp. 1125–1131, Oct. 2024, doi: 10.32628/CSEIT24113369.