Federated Learning Approaches for Privacy-Preserving Threat Detection in Smart Home IoT Environments
DOI:
https://doi.org/10.32628/CSEIT24113369Keywords:
Federated Learning, Smart Home IoT, Privacy-Preserving Threat Detection, Cybersecurity, Edge ComputingAbstract
Smart home Internet of Things (IoT) environments have become increasingly pervasive, offering convenience and automation while simultaneously introducing new cybersecurity vulnerabilities. Traditional centralized machine learning approaches for threat detection rely on aggregating sensitive user data into cloud servers, raising significant concerns regarding privacy, data security, and regulatory compliance. Federated learning (FL) has emerged as a promising paradigm that enables collaborative model training across distributed IoT devices without sharing raw data, thus preserving privacy while maintaining effective threat detection. This review paper explores the application of FL in privacy-preserving threat detection within smart home IoT systems, analyzing its strengths, limitations, and future potential. The discussion highlights how FL mitigates risks such as data leakage, adversarial attacks, and model inversion while ensuring scalability in heterogeneous device ecosystems. Moreover, the review examines existing frameworks, comparative case studies, and integration with complementary technologies like blockchain and differential privacy to enhance robustness. Challenges such as communication overhead, resource constraints, and model poisoning attacks are also critically addressed. By synthesizing recent advancements and identifying open research gaps, this paper provides a roadmap for leveraging FL in developing secure, scalable, and privacy-preserving threat detection systems for smart homes.
📊 Article Downloads
References
Ajayi, A. A., Igba, E., Soyele, A. D., & Enyejo, J. O. (2024). Quantum Cryptography and Blockchain-Based Social Media Platforms as a Dual Approach to Securing Financial Transactions in CBDCs and Combating Misinformation in U.S. Elections. International Journal of Innovative Science and Research Technology. Volume 9, Issue 10, Oct.– 2024 ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24OCT1697. DOI: https://doi.org/10.38124/ijisrt/IJISRT24OCT1697
Alamer, A., & colleagues. (2024). Privacy-preserving federated learning with a secure collaborative framework. Journal of Computer and System Sciences. DOI: https://doi.org/10.1016/j.iot.2023.101015
Asiri, M., Khemakhem, M. A., Alhebshi, R. M., Alsulami, B. S., & Eassa, F. E. (2025). RPFL: A reliable and privacy-preserving framework for federated learning-based IoT malware detection. Electronics. DOI: https://doi.org/10.3390/electronics14061089
Atalor, S. I. (2019). Federated Learning Architectures for Predicting Adverse Drug Events in Oncology Without Compromising Patient Privacy ICONIC RESEARCH AND ENGINEERING JOURNALS JUN 2019 | IRE Journals | Volume 2 Issue 12 | ISSN: 2456-8880
Atalor, S. I. (2022). Blockchain-Enabled Pharmacovigilance Infrastructure for National Cancer Registries. International Journal of Scientific Research and Modern Technology, 1(1), 50–64. https://doi.org/10.38124/ijsrmt.v1i1.493 DOI: https://doi.org/10.38124/ijsrmt.v1i1.493
Atalor, S. I. (2022). Data-Driven Cheminformatics Models for Predicting Bioactivity of Natural Compounds in Oncology. International Journal of Scientific Research and Modern Technology, 1(1), 65–76. https://doi.org/10.38124/ijsrmt.v1i1.496 DOI: https://doi.org/10.38124/ijsrmt.v1i1.496
Atalor, S. I., Ijiga, O. M., & Enyejo, J. O. (2023). Harnessing Quantum Molecular Simulation for Accelerated Cancer Drug Screening. International Journal of Scientific Research and Modern Technology, 2(1), 1–18. https://doi.org/10.38124/ijsrmt.v2i1.502 DOI: https://doi.org/10.38124/ijsrmt.v2i1.502
Atalor, S. I., Raphael, F. O. & Enyejo, J. O. (2023). Wearable Biosensor Integration for Remote Chemotherapy Monitoring in Decentralized Cancer Care Models. International Journal of Scientific Research in Science and Technology Volume 10, Issue 3 (www.ijsrst.com) doi : https://doi.org/10.32628/IJSRST23113269 DOI: https://doi.org/10.32628/IJSRST23113269
Azonuche, T. I., & Enyejo, J. O. (2024). Agile Transformation in Public Sector IT Projects Using Lean-Agile Change Management and Enterprise Architecture Alignment. International Journal of Scientific Research and Modern Technology, 3(8), 21–39. https://doi.org/10.38124/ijsrmt.v3i8.432 DOI: https://doi.org/10.38124/ijsrmt.v3i8.432
Azonuche, T. I., & Enyejo, J. O. (2024). Evaluating the Impact of Agile Scaling Frameworks on Productivity and Quality in Large-Scale Fintech Software Development. International Journal of Scientific Research and Modern Technology, 3(6), 57–69. https://doi.org/10.38124/ijsrmt.v3i6.449 DOI: https://doi.org/10.38124/ijsrmt.v3i6.449
Azonuche, T. I., & Enyejo, J. O. (2024). Exploring AI-Powered Sprint Planning Optimization Using Machine Learning for Dynamic Backlog Prioritization and Risk Mitigation. International Journal of Scientific Research and Modern Technology, 3(8), 40–57. https://doi.org/10.38124/ijsrmt.v3i8.448. DOI: https://doi.org/10.38124/ijsrmt.v3i8.448
Belarbi, O., Spyridopoulos, T., Anthi, E., Mavromatis, I., Carnelli, P., & Khan, A. (2023). Federated deep learning for intrusion detection in IoT networks. arXiv preprint. DOI: https://doi.org/10.1109/GLOBECOM54140.2023.10437860
Belenguer, A., Navaridas, J., & Pascual, J. A. (2022). A review of Federated Learning in Intrusion Detection Systems for IoT. arXiv preprint. DOI: https://doi.org/10.2139/ssrn.4261807
Chakraborty, A., Islam, M., Shahriyar, F., Islam, S., Zaman, H. U., & Hasan, M. (2023). Smart home system: a comprehensive review. Journal of Electrical and Computer Engineering, 2023(1), 7616683. DOI: https://doi.org/10.1155/2023/7616683
Ciekanowski, Z., Gruchelski, M., Nowicka, J., Żurawski, S., & Pauliuchuk, Y. (2023). Cyberspace as a Source of New Threats to the Security of the European Union. DOI: https://doi.org/10.35808/ersj/3249
Domínguez-Bolaño, T., Campos, O., Barral, V., Escudero, C. J., & García-Naya, J. A. (2022). An overview of IoT architectures, technologies, and existing open-source projects. Internet of Things, 20, 100626. DOI: https://doi.org/10.1016/j.iot.2022.100626
Dritsas, E., et al. (2025). Federated Learning for IoT: A Survey of Techniques. Sensors (Basel). DOI: https://doi.org/10.3390/jsan14010009
Enyejo, J. O., Fajana, O. P., Jok, I. S., Ihejirika, C. J., Awotiwon, B. O., & Olola, T. M. (2024). Digital Twin Technology, Predictive Analytics, and Sustainable Project Management in Global Supply Chains for Risk Mitigation, Optimization, and Carbon Footprint Reduction through Green Initiatives. International Journal of Innovative Science and Research Technology, Volume 9, Issue 11, November– 2024. ISSN No:-2456-2165. https://doi.org/10.38124/ijisrt/IJISRT24NOV1344 DOI: https://doi.org/10.38124/ijisrt/IJISRT24NOV1344
Ganapathy, G., et al. (2024). A blockchain-based federated deep learning model for… ScienceDirect.
Hassan, A., Nizam-Uddin, N., Quddus, A., Hassan, S. R., Rehman, A. U., & Bharany, S. (2024). Navigating IoT Security: Insights into Architecture, Key Security Features, Attacks, Current Challenges and AI-Driven Solutions Shaping the Future of Connectivity. Computers, Materials & Continua, 81(3). DOI: https://doi.org/10.32604/cmc.2024.057877
Idika, C. N. (2023). Quantum Resistant Cryptographic Protocols for Securing Autonomous Vehicle to Vehicle (V2V) Communication Networks International Journal of Scientific Research in Computer Science, Engineering and Information Technology Volume 10, Issue 1 doi : https://doi.org/10.32628/CSEIT2391547 DOI: https://doi.org/10.32628/CSEIT2391547
Igba E., Ihimoyan, M. K., Awotinwo, B., & Apampa, A. K. (2024). Integrating BERT, GPT, Prophet Algorithm, and Finance Investment Strategies for Enhanced Predictive Modeling and Trend Analysis in Blockchain Technology. Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., November-December-2024, 10 (6) : 1620-1645.https://doi.org/10.32628/CSEIT241061214 DOI: https://doi.org/10.32628/CSEIT241061214
Ijiga, A. C., Abutu E. P., Idoko, P. I., Ezebuka, C. I., Harry, K. D., Ukatu, I. E., & Agbo, D. O. (2024). Technological innovations in mitigating winter health challenges in New York City, USA. International Journal of Science and Research Archive, 2024, 11(01), 535–551.• https://ijsra.net/sites/default/files/IJSRA-2024-0078.pdf DOI: https://doi.org/10.30574/ijsra.2024.11.1.0078
Ijiga, A. C., Abutu, E. P., Idoko, P. I., Agbo, D. O., Harry, K. D., Ezebuka, C. I., & Umama, E. E. (2024). Ethical considerations in implementing generative AI for healthcare supply chain optimization: A cross-country analysis across India, the United Kingdom, and the United States of America. International Journal of Biological and Pharmaceutical Sciences Archive, 2024, 07(01), 048–063. https://ijbpsa.com/sites/default/files/IJBPSA-2024-0015.pdf DOI: https://doi.org/10.53771/ijbpsa.2024.7.1.0015
Ijiga, A. C., Enyejo, L. A., Odeyemi, M. O., Olatunde, T. I., Olajide, F. I & Daniel, D. O. (2024). Integrating community-based partnerships for enhanced health outcomes: A collaborative model with healthcare providers, clinics, and pharmacies across the USA. Open Access Research Journal of Biology and Pharmacy, 2024, 10(02), 081–104. https://oarjbp.com/content/integrating-community-based-partnerships-enhanced-health-outcomes-collaborative-model DOI: https://doi.org/10.53022/oarjbp.2024.10.2.0015
Ijiga, A. C., Olola, T. M., Enyejo, L. A., Akpa, F. A., Olatunde, T. I., & Olajide, F. I. (2024). Advanced surveillance and detection systems using deep learning to combat human trafficking. Magna Scientia Advanced Research and Reviews, 2024, 11(01), 267–286. https://magnascientiapub.com/journals/msarr/sites/default/files/MSARR-2024-0091.pdf. DOI: https://doi.org/10.30574/msarr.2024.11.1.0091
Ijiga, O. M., Ifenatuora, G. P., & Olateju, M. (2021). Bridging STEM and Cross-Cultural Education: Designing Inclusive Pedagogies for Multilingual Classrooms in Sub Saharan Africa. JUL 2021 | IRE Journals | Volume 5 Issue 1 | ISSN: 2456-8880.
Ijiga, O. M., Ifenatuora, G. P., & Olateju, M. (2021). Digital Storytelling as a Tool for Enhancing STEM Engagement: A Multimedia Approach to Science Communication in K-12 Education. International Journal of Multidisciplinary Research and Growth Evaluation. Volume 2; Issue 5; September-October 2021; Page No. 495-505. https://doi.org/10.54660/.IJMRGE.2021.2.5.495-505 DOI: https://doi.org/10.54660/.IJMRGE.2021.2.5.495-505
Ijiga, O. M., Ifenatuora, G. P., & Olateju, M. (2022). AI-Powered E-Learning Platforms for STEM Education: Evaluating Effectiveness in Low Bandwidth and Remote Learning Environments. International Journal of Scientific Research in Computer Science, Engineering and Information Technology ISSN : 2456-3307 Volume 8, Issue 5 September-October-2022 Page Number : 455-475 doi : https://doi.org/10.32628/IJSRCSEIT DOI: https://doi.org/10.32628/IJSRCSEIT
Ijiga, O. M., Ifenatuora, G. P., & Olateju, M. (2023). STEM-Driven Public Health Literacy : Using Data Visualization and Analytics to Improve Disease Awareness in Secondary Schools. International Journal of Scientific Research in Science and Technology. Volume 10, Issue 4 July-August-2023 Page Number : 773-793. https://doi.org/10.32628/IJSRST
Imoh, P. O. (2023). Impact of Gut Microbiota Modulation on Autism Related Behavioral Outcomes via Metabolomic and Microbiome-Targeted Therapies International Journal of Scientific Research and Modern Technology (IJSRMT) Volume 2, Issue 8, 2023 DOI: https://doi.org/10.38124/ijsrmt.v2i8.494 DOI: https://doi.org/10.38124/ijsrmt.v2i8.494
Imoh, P. O., & Idoko, I. P. (2022). Gene-Environment Interactions and Epigenetic Regulation in Autism Etiology through Multi-Omics Integration and Computational Biology Approaches. International Journal of Scientific Research and Modern Technology, 1(8), 1–16. https://doi.org/10.38124/ijsrmt.v1i8.463 DOI: https://doi.org/10.38124/ijsrmt.v1i8.463
Imoh, P. O., & Idoko, I. P. (2023). Evaluating the Efficacy of Digital Therapeutics and Virtual Reality Interventions in Autism Spectrum Disorder Treatment. International Journal of Scientific Research and Modern Technology, 2(8), 1–16. https://doi.org/10.38124/ijsrmt.v2i8.462 DOI: https://doi.org/10.38124/ijsrmt.v2i8.462
Jayanthi, V. (2023). The Transformative role of AI and IoT in smart homes https://www.bitsathy.ac.in/the-transformative-role-of-ai-and-iot-in-smart-homes/
Kaur, I., & Jadhav, A. J. (2023). Federated Learning in IoT: A Survey from a Resource-Constrained Perspective. In 2023 International Conference on Artificial Intelligence Robotics, Signal and Image Processing (AIRoSIP) (pp. 376-381). IEEE. DOI: https://doi.org/10.1109/AIRoSIP58759.2023.10874004
Li, H., Ge, L., & Tian, L. (2024). Survey: federated learning data security and privacy-preserving in edge-Internet of Things. Artificial Intelligence Review, 57(5), 130. DOI: https://doi.org/10.1007/s10462-024-10774-7
Lianga, J., et al. (2023). A Survey on Federated Learning Poisoning Attacks and Defenses. arXiv Preprint.
Ma, J., Naas, S., Sigg, S., & Lyu, X. (2021). Privacy-preserving federated learning based on multi-key homomorphic encryption. arXiv preprint. DOI: https://doi.org/10.1002/int.22818
Madadi-Barough, S., Ruiz-Blanco, P., Lin, J., Vidal, R., & Gomez, C. (2024). Matter: IoT interoperability for smart homes. arXiv preprint. DOI: https://doi.org/10.1109/MCOM.001.2400274
Magara, T., & Zhou, Y. (2024). Internet of Things (IoT) of Smart Homes: Privacy and Security. Journal of Electrical and Computer Engineering. DOI: https://doi.org/10.1155/2024/7716956
Mughal, F. R., He, J., Das, B., Dharejo, F. A., Zhu, N., Khan, S. B., & Alzahrani, S. (2024). Adaptive federated learning for resource-constrained IoT devices through edge intelligence and multi-edge clustering. Scientific Reports, 14(1), 28746. DOI: https://doi.org/10.1038/s41598-024-78239-z
Nair, A. K. (2023). A robust analysis of adversarial attacks on federated learning. Journal of Information Security and Applications. DOI: https://doi.org/10.1016/j.csi.2023.103723
Nguyen, T. D., Marchal, S., Miettinen, M., Fereidooni, H., Asokan, N., & Sadeghi, A.-R. (2018). DÏoT: A federated self-learning anomaly detection system for IoT. arXiv preprint. DOI: https://doi.org/10.1109/ICDCS.2019.00080
Nobakht, M., et al. (2024). Secure IoT malware detection model with federated learning. Computers & Security. DOI: https://doi.org/10.1016/j.compeleceng.2024.109139
Ononiwu, M., Azonuche, T. I., & Enyejo, J. O. (2023). Exploring Influencer Marketing Among Women Entrepreneurs using Encrypted CRM Analytics and Adaptive Progressive Web App Development. International Journal of Scientific Research and Modern Technology, 2(6), 1–13. https://doi.org/10.38124/ijsrmt.v2i6.562 DOI: https://doi.org/10.38124/ijsrmt.v2i6.562
Ononiwu, M., Azonuche, T. I., Imoh, P. O. & Enyejo, J. O. (2023). Exploring SAFe Framework Adoption for Autism-Centered Remote Engineering with Secure CI/CD and Containerized Microservices Deployment International Journal of Scientific Research in Science and Technology Volume 10, Issue 6 doi : https://doi.org/10.32628/IJSRST DOI: https://doi.org/10.32628/IJSRST
Ononiwu, M., Azonuche, T. I., Imoh, P. O. & Enyejo, J. O. (2024). Evaluating Blockchain Content Monetization Platforms for Autism-Focused Streaming with Cybersecurity and Scalable Microservice Architectures ICONIC RESEARCH AND ENGINEERING JOURNALS Volume 8 Issue 1
Ononiwu, M., Azonuche, T. I., Okoh, O. F., & Enyejo, J. O. (2023). AI-Driven Predictive Analytics for Customer Retention in E-Commerce Platforms using Real-Time Behavioral Tracking. International Journal of Scientific Research and Modern Technology, 2(8), 17–31. https://doi.org/10.38124/ijsrmt.v2i8.561 DOI: https://doi.org/10.38124/ijsrmt.v2i8.561
Papadopoulos, C. (2024). Recent advancements in federated learning: state of the art and future promises. Future Internet. DOI: https://doi.org/10.3390/fi16110415
Popoola, O., Rodrigues, M., Marchang, J., Shenfield, A., Ikpehai, A., & Popoola, J. (2024). A critical literature review of security and privacy in smart home healthcare schemes adopting IoT & blockchain: problems, challenges and solutions. Blockchain: Research and Applications, 5(2), 100178. DOI: https://doi.org/10.1016/j.bcra.2023.100178
Rey, V., Sánchez Sánchez, P. M., Huertas Celdrán, A., Bovet, G., & Jaggi, M. (2021). Federated learning for malware detection in IoT devices. ScienceDirect. DOI: https://doi.org/10.1016/j.comnet.2021.108693
Saeed, N., (2024). Comprehensive review of federated learning challenges. Journal of Big Data. DOI: https://doi.org/10.1186/s40537-025-01195-6
Tayyeh, H. K., et al. (2024). A Differential Privacy approach in Federated Learning. Computers. DOI: https://doi.org/10.3390/computers13110277
Vardakis, G., Hatzivasilis, G., Koutsaki, E., & Papadakis, N. (2024). Review of smart-home security using the internet of things. Electronics, 13(16), 3343. DOI: https://doi.org/10.3390/electronics13163343
Wen, J., Zhang, Z., Lan, Y., Cui, Z., & Zhang, W. (2023). A survey on federated learning: challenges and applications. International Journal of Machine Learning and Cybernetics. DOI: https://doi.org/10.1007/s13042-022-01647-y
Zhang, T., Gao, L., He, C., Zhang, M., Krishnamachari, B., & Avestimehr, S. (2021). Federated Learning for Internet of Things: Applications, Challenges, and Opportunities. arXiv Preprint.
Zhang, T., Gao, L., He, C., Zhang, M., Krishnamachari, B., & Avestimehr, S. (2021). Federated Learning for Internet of Things: Applications, Challenges, and Opportunities. arXiv Preprint. DOI: https://doi.org/10.1109/IOTM.004.2100182
Zhou, S., et al. (2025). Group verifiable secure aggregation for federated learning. Scientific Reports. DOI: https://doi.org/10.1038/s41598-025-94478-0
Downloads
Published
Issue
Section
License
Copyright (c) 2024 International Journal of Scientific Research in Computer Science, Engineering and Information Technology

This work is licensed under a Creative Commons Attribution 4.0 International License.