Predictive Modelling and IoT-Based Early Intervention for Diabetes Mellitus in East and West Godavari Districts Using Clinical Big Data

Authors

  • Suneel Kumar Duvvuri Department of Computer Science, Government College Autonomous, Rajahmundry, Andhra Pradesh, India Author

DOI:

https://doi.org/10.32628/CSEIT25111695

Keywords:

Diabetes Mellitus, Predictive Modeling, Clinical Big Data, IoT, Early Detection, Machine Learning, East Godavari, West Godavari

Abstract

The rapid growth of Diabetes Mellitus (DM) in the East and West Godavari districts of India demands advanced methods for early detection of risk. The present study has developed and validated an innovative prognostic framework which combines the static clinical data with simulated real-time activity monitoring. An attempt has been made to create a dataset by integrating The Pima Indians Diabetes Database and the Human Activity Recognition (HAR) Smartphones Dataset. A comparative analysis of machine learning classifiers shown that the Random Forest model yielded 92% accuracy with an F1-score of 0.91. The results also confirm that this data-fusion approach significantly enhances predictive power than models using only clinical data. This validated framework provides a robust, scalable tool for early risk assessment, enabling a critical shift from reactive treatment to proactive, personalized interventions and also informing targeted public health measures.

📊 Article Downloads

References

D. Atlas and others, “International diabetes federation,” IDF Diabetes Atlas, 7th edn. Brussels, Belgium: International Diabetes Federation, vol. 33, no. 2, 2015.

R. G. Pradeepa and V. Mohan, “Epidemiology of type 2 diabetes in India,” Indian J Ophthalmol, vol. 69, pp. 2932–2938, Sep. 2021, doi: 10.4103/ijo.IJO_1627_21. DOI: https://doi.org/10.4103/ijo.IJO_1627_21

W. Yang et al., “Economic Costs of Diabetes in the U.S. in 2017,” Diabetes Care, vol. 41, pp. 917–928, Sep. 2018, doi: 10.2337/dci18-0007. DOI: https://doi.org/10.2337/dci18-0007

P. Nirmala, “Comparative Study of Prevalence of type-2 Diabetes Mellitus in Various Demographic Regions of Andhra Pradesh, India: A Population-Based Study,” International Journal of MCH and AIDS (IJMA), vol. 5, no. 2, 2016, doi: 10.21106/ijma.91.

R. Anjana et al., “Prevalence of diabetes and prediabetes in 15 states of India: Results from the ICMR-INDIAB population-based cross-sectional study,” Lancet Diabetes Endocrinol, vol. 5, Sep. 2017, doi: 10.1016/S2213-8587(17)30174-2. DOI: https://doi.org/10.1016/S2213-8587(17)30174-2

W. H. Organization, World Health Statistics 2016 [OP]: monitoring health for the sustainable development goals (SDGs). World Health Organization, 2016.

P. Nirmala, “Comparative Study of Prevalence of type-2 Diabetes Mellitus in Various Demographic Regions of Andhra Pradesh, India: A Population-Based Study,” International Journal of MCH and AIDS (IJMA), vol. 5, no. 2, 2016, doi: 10.21106/ijma.91. DOI: https://doi.org/10.21106/ijma.91

C. Chakraborty, M. Bhattacharya, S. Pal, and S.-S. Lee, “From machine learning to deep learning: Advances of the recent data-driven paradigm shift in medicine and healthcare,” Curr Res Biotechnol, vol. 7, p. 100164, 2024, doi: https://doi.org/10.1016/j.crbiot.2023.100164. DOI: https://doi.org/10.1016/j.crbiot.2023.100164

O. Kehinde, “Machine Learning in Predictive Modelling: Addressing Chronic Disease Management through Optimized Healthcare Processes,” International Journal of Research Publication and Reviews, vol. 6, pp. 1525–1539, Sep. 2025. DOI: https://doi.org/10.55248/gengpi.6.0125.0327

T. Sharma and M. Shah, “A comprehensive review of machine learning techniques on diabetes detection,” Vis Comput Ind Biomed Art, vol. 4, no. 1, p. 30, 2021, doi: 10.1186/s42492-021-00097-7. DOI: https://doi.org/10.1186/s42492-021-00097-7

J. Smith, J. Everhart, W. Dickson, W. Knowler, and R. Johannes, “Using the ADAP Learning Algorithm to Forcast the Onset of Diabetes Mellitus,” Proceedings - Annual Symposium on Computer Applications in Medical Care, vol. 10, Sep. 1988.

Z. Punthakee, R. Goldenberg, and P. Katz, “Definition, Classification and Diagnosis of Diabetes, Prediabetes and Metabolic Syndrome,” Can J Diabetes, vol. 42, pp. S10–S15, Sep. 2018, doi: 10.1016/j.jcjd.2017.10.003. DOI: https://doi.org/10.1016/j.jcjd.2017.10.003

S. D. Dlima, S. Shevade, S. R. Menezes, and A. Ganju, “Digital Phenotyping in Health Using Machine Learning Approaches: Scoping Review,” JMIR Bioinform Biotech, vol. 3, no. 1, Jan. 2022, doi: 10.2196/39618. DOI: https://doi.org/10.2196/39618

D. Anguita, A. Ghio, L. Oneto, F. Parra, and J. Reyes-Ortiz, “A Public Domain Dataset for Human Activity Recognition using Smartphones,” Sep. 2013.

D. Sisodia and D. S. Sisodia, “Prediction of Diabetes using Classification Algorithms,” Procedia Comput Sci, vol. 132, pp. 1578–1585, 2018, doi: https://doi.org/10.1016/j.procs.2018.05.122. DOI: https://doi.org/10.1016/j.procs.2018.05.122

“Data-society Pima Indians Diabetes Database.”

E. Adeghe, C. Okolo, and O. Ojeyinka, “A review of wearable technology in healthcare: Monitoring patient health and enhancing outcomes,” Open Access Research Journal of Multidisciplinary Studies, pp. 142–148, Sep. 2024, doi: 10.53022/oarjms.2024.7.1.0019. DOI: https://doi.org/10.53022/oarjms.2024.7.1.0019

B. Bogue-Jimenez, X. Huang, D. Powell, and A. Doblas, “Selection of Noninvasive Features in Wrist-Based Wearable Sensors to Predict Blood Glucose Concentrations Using Machine Learning Algorithms,” Sensors, vol. 22, no. 9, 2022, doi: 10.3390/s22093534. DOI: https://doi.org/10.3390/s22093534

F. Krones, U. Marikkar, G. Parsons, A. Szmul, and A. Mahdi, “Review of multimodal machine learning approaches in healthcare,” Information Fusion, vol. 114, p. 102690, 2025, doi: https://doi.org/10.1016/j.inffus.2024.102690. DOI: https://doi.org/10.1016/j.inffus.2024.102690

A. D. G. A. O. L. Reyes-Ortiz Jorge and X. Parra, “Human Activity Recognition Using Smartphones,” 2013.

J. Tuomilehto et al., “Prevention of Type 2 Diabetes Mellitus by Changes in Lifestyle Among Subjects with Impaired Glucose Tolerance,” N Engl J Med, vol. 344, pp. 1343–1350, Sep. 2001, doi: 10.1056/NEJM200105033441801. DOI: https://doi.org/10.1056/NEJM200105033441801

L. Breiman, “Random Forests,” Mach Learn, vol. 45, no. 1, pp. 5–32, 2001, doi: 10.1023/A:1010933404324. DOI: https://doi.org/10.1023/A:1010933404324

Downloads

Published

06-09-2025

Issue

Section

Research Articles

How to Cite

[1]
Suneel Kumar Duvvuri, “Predictive Modelling and IoT-Based Early Intervention for Diabetes Mellitus in East and West Godavari Districts Using Clinical Big Data”, Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, vol. 11, no. 5, pp. 28–38, Sep. 2025, doi: 10.32628/CSEIT25111695.