A Novel Ensemble-Based Sentiment Classifier for Deep Fake Tweets Using Majority Voting With BERT
Keywords:
BERT, Deep fake tweetsAbstract
This study affords a novel approach to sentiment analysis of deepfake tweets by way of growing a sentiment majority voting classifier combined with transfer mastering-based function engineering. The goal is to appropriately distinguish between human-generated and robotic-generated tweets, leveraging the electricity of gadget getting to know and natural language processing. A two-column dataset containing the tweet text and corresponding labels (human or robotic) serves because the input. We appoint Bidirectional Encoder Representations from Transformers for function extraction, taking gain of its superior contextual understanding of text. The proposed version integrates the strengths of each BERT providing a green and scalable answer for deepfake tweet detection. This approach contributes to more desirable detection accuracy, presenting a practical framework for figuring out automated content in social media environments.
Downloads
References
M. Masood, M. Nawaz, K. M. Malik, A. Javed, A. Irtaza, and H. Malik, ‘‘Deepfakes generation and detection: State-of-the-art, open challenges, countermeasures, and way forward,’’ Appl. Intell., vol. 53, no. 4, pp. 3974–4026, Feb. 2023.
S. G. Tesfagergish, R. Damaševičius, and J. Kapociute-Dzikiene, ‘‘Deep fake recognition in tweets using text augmentation, word embeddings and deep learning,’’ in Proc. Int. Conf. Comput. Sci. Appl. Cham, Switzerland: Springer, 2021, pp. 523–538.
V. Rupapara, F. Rustam, A. Amaar, P. B. Washington, E. Lee, and I. Ashraf, ‘‘Deepfake tweets classification using stacked bi-LSTM and words embedding,’’ PeerJ Comput. Sci., vol. 7, p. e745, Oct. 2021.
T. Fagni, F. Falchi, M. Gambini, A. Martella, and M. Tesconi, ‘‘TweepFake: About detecting deepfake tweets,’’ PLoS ONE, vol. 16, no. 5, May 2021, Art. no. e0251415.
S. Bengesi, T. Oladunni, R. Olusegun, and H. Audu, ‘‘A machine learningsentiment analysis on monkeypox outbreak: An extensive dataset to show the polarity of public opinion from Twitter tweets,’’ IEEE Access, vol. 11, pp. 11811–11826, 2023.
B. S. Ainapure, R. N. Pise, P. Reddy, B. Appasani, A. Srinivasulu, M. S. Khan, and N. Bizon, ‘‘Sentiment analysis of COVID-19 tweets using deep learning and lexicon-based approaches,’’ Sustainability, vol. 15, no. 3, p. 2573, Jan. 2023.
N. Nandal, R. Tanwar, and A.-S.-K. Pathan, ‘‘Sentiment analysis based emotion extraction for COVID-19 using crawled tweets and global statistics for mental health,’’ Proc. Comput. Sci., vol. 218, pp. 949–958, Jan. 2023.
A. K. R. Nadikattu, ‘‘Machine learning vs deep learning models for detecting fake news: A comparative analysis on fake-newsNet dataset,’’ SSRN Electron. J., vol. 1, no. 1, pp. 438–224, Mar. 2023.
J. Mutinda, W. Mwangi, and G. Okeyo, ‘‘Sentiment analysis of text reviews using lexicon-enhanced bert embedding (LeBERT) model with convolutional neural network,’’ Appl. Sci., vol. 13, no. 3, p. 1445, Jan. 2023.
A. Raza, K. Munir, and M. Almutairi, ‘‘A novel deep learning approach for deepfake image detection,’’ Appl. Sci., vol. 12, no. 19, p. 9820, Sep. 2022.
A. Bello, S.-C. Ng, and M.-F. Leung, ‘‘A BERT framework to sentiment analysis of tweets,’’ Sensors, vol. 23, no. 1, p. 506, Jan. 2023.
A. Alqarni and A. Rahman, ‘‘Arabic tweets-based sentiment analysis to investigate the impact of COVID-19 in KSA: A deep learning approach,’’ Big Data Cognit. Comput., vol. 7, no. 1, p. 16, Jan. 2023.
W. H. Bangyal, R. Qasim, N. U. Rehman, Z. Ahmad, H. Dar, L. Rukhsar, Z. Aman, and J. Ahmad, ‘‘Detection of fake news text classification on COVID-19 using deep learning approaches,’’ Comput. Math. Methods Med., vol. 2021, pp. 1–14, Nov. 2021.
S. N. Alsubari, M. B. Shelke, and S. N. Deshmukh, ‘‘Fake reviews identification based on deep computational linguistic,’’ Int. J. Adv. Sci. Technol., vol. 29, no. 8s, pp. 3846–3856, 2020.
H. Omar and L. A. Lasrado, ‘‘Uncover social media interactions on cryptocurrencies using social set analysis (SSA),’’ Proc. Comput. Sci., vol. 219, pp. 161–169, Jan. 2023.
F. H. Rachman, Imamah, and B. S. Rintyarna, ‘‘Sentiment analysis of Madura tourism in new normal era using text blob and KNN with hyperparameter tuning,’’ in Proc. Int. Seminar Mach. Learn., Optim., Data Sci. (ISMODE), Jan. 2022, pp. 23–27.
T. Pano and R. Kashef, ‘‘A complete VADER-based sentiment analysis of bitcoin (BTC) tweets during the era of COVID-19,’’ Big Data Cognit. Comput., vol. 4, no. 4, p. 33, Nov. 2020.
D. Valle-Cruz, V. Fernandez-Cortez, A. López-Chau, and R. Sandoval-Almazán, ‘‘Does Twitter affect stock market decisions? Financial sentiment analysis during pandemics: A comparative study of the H1N1 and the COVID-19 periods,’’ Cognit. Comput., vol. 14, no. 1, pp. 372–387, Jan. 2022.
B. D. Verma, R. Pratap, and M. Thakur, ‘‘Variance reduction in feature hashing using MLE and control variate method,’’ Mach. Learn., vol. 111, no. 7, pp. 2631–2662, Jul. 2022.
D. Yan, K. Li, S. Gu, and L. Yang, ‘‘Network-based bag-of-words model for text classification,’’ IEEE Access, vol. 8, pp. 82641–82652, 2020.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 International Journal of Scientific Research in Computer Science, Engineering and Information Technology

This work is licensed under a Creative Commons Attribution 4.0 International License.