Human-Centered Prompt Engineering: Techniques for Ethical and Inclusive LLM Outputs
DOI:
https://doi.org/10.32628/CSEIT25113357Keywords:
Prompt Engineering, Responsible AI, Bias Mitigation, Inclusive AI, Large Language Models, Human-Centered DesignAbstract
Large Language Models (LLMs) are being integrated into public-facing applications more and more despite their ethical and social outputs being of growing concern. They often generate biased recommendations, reflect exclusionary language, and amplify societal inequities. LLMs often reflect exclusionary language patterns in their responses. Our societal inequities writ large are their target. This paper positions the issue as fundamentally a human-centered design challenge—a prompt engineering problem—by critiquing the way prompts shape LLM behavior, rather than attributing the issue solely to societal inequities reflected in their outputs.
Downloads
References
R. R. Hoffman, T. Miller, G. Klein, and P. J. Feltovich, “Metrics for explainable AI: Challenges and prospects,” arXiv preprint arXiv:1812.04608, 2018. [Online]. Available: https://arxiv.org/abs/1812.04608
R. Shokri and V. Shmatikov, “Privacy-preserving deep learning,” in Proc. 22nd ACM SIGSAC Conf. Comput. Commun. Secur. (CCS), Denver, CO, USA, 2015, pp. 1310–1321. [Online]. Available: https://dl.acm.org/doi/10.1145/2810103.2813687
L. Floridi, J. Cowls, M. Beltrametti, et al., “AI4People—An ethical framework for a good AI society: Opportunities, risks, principles, and recommendations,” Minds and Machines, vol. 28, no. 4, pp. 689–707, 2018. [Online]. Available: https://doi.org/10.1007/s11023-018-9482-5
F. Scaramuzza, G. Quattrocchi, and D. A. Tamburri, “Engineering trustworthy machine-learning operations with zero-knowledge proofs,” arXiv preprint arXiv:2505.20136, May 2025. [Online]. Available: https://arxiv.org/abs/2505.20136
K. A. M. Carandang, J. M. P. Araña, E. R. A. Casin, C. P. Monterola, D. S. Y. Tan, J. F. B. Valenzuela, and C. M. Alis, “Are LLMs reliable? An exploration of the reliability of large language models in clinical note generation,” arXiv preprint arXiv:2505.17095, May 2025. [Online]. Available: https://arxiv.org/abs/2505.17095
E. Mata i Noguera, R. Ortiz Uroz, and I. Labastida i Juan, “Enabling the reuse of personal data in research: A classification model for legal compliance,” arXiv preprint arXiv:2505.15183, May 2025. [Online]. Available: https://arxiv.org/abs/2505.15183
A. Cleven and R. Winter, “Regulatory compliance in information systems research–Literature analysis and research agenda,” in Enterprise, Business-Process and Information Systems Modeling, Lecture Notes in Business Information Processing, vol. 29, Springer, 2009, pp. 174–186. [Online]. Available: https://link.springer.com/chapter/10.1007/978-3-642-01862-6_15
D. S. Schiff, A. Ayesh, L. Musikanski, and J. C. Havens, “IEEE 7010: A new standard for assessing the well-being implications of artificial intelligence,” arXiv preprint arXiv:2005.06620, May 2020. [Online]. Available: https://arxiv.org/abs/2005.06620
U. Ehsan and M. O. Riedl, “Human-centered explainable AI: Towards a reflective sociotechnical approach,” arXiv preprint arXiv:2002.01092, Feb. 2020. [Online]. Available: https://arxiv.org/abs/2002.01092
L. Cheng, K. R. Varshney, and H. Liu, “Socially Responsible AI Algorithms: Issues, Purposes, and Challenges,” arXiv preprint arXiv:2101.02032, Jan. 2021. [Online]. Available: https://arxiv.org/abs/2101.02032
W. van der Maden, D. Lomas, M. Sadek, and P. Hekkert, “Positive AI: Key Challenges in Designing Artificial Intelligence for Wellbeing,” arXiv preprint arXiv:2304.12241, Apr. 2023. [Online]. Available: https://arxiv.org/abs/2304.12241
Downloads
Published
Issue
Section
License
Copyright (c) 2025 International Journal of Scientific Research in Computer Science, Engineering and Information Technology

This work is licensed under a Creative Commons Attribution 4.0 International License.