Detection of Liver Cirrhosis using a Web-Based Convolutional Neural Network System

Authors

  • Adeoti Babajide E Department of Software Engineering, Babcock University, Ilishan-Remo, Ogun State, Nigeria Author
  • Lawani Benjamin Department of Software Engineering, Babcock University, Ilishan-Remo, Ogun State, Nigeria Author
  • Ayoola Oluwatorera Department of Software Engineering, Babcock University, Ilishan-Remo, Ogun State, Nigeria Author
  • Mgbeahuruike Emmanuel Department of Software Engineering, Babcock University, Ilishan-Remo, Ogun State, Nigeria Author
  • Adebanjo Samuel A Author
  • Oladunjoye Michael Author

DOI:

https://doi.org/10.32628/CSEIT25113395

Keywords:

Liver Cirrhosis, Convolutional Neural Network, Deep Learning, Medical Image Classification, Web-Based System, Early Diagnosis

Abstract

Liver cirrhosis, a critical health condition marked by irreversible scarring of the liver, contributes significantly to global morbidity and mortality. Traditional diagnostic methods are invasive, costly, and often detect the disease at advanced stages. This study presents the design and implementation of a non-invasive, web-based liver cirrhosis detection system employing Convolutional Neural Networks (CNNs). The system aims to support early diagnosis and prognosis using medical imaging and machine learning. The implemented system demonstrates high accuracy in classifying cirrhotic conditions and offers a scalable solution for under-resourced medical facilities

📊 Article Downloads

References

Al-Hasani, M., Sultan, L. R., Sagreiya, H., Cary, T. W., Karmacharya, M. B., & Sehgal, C. M. (2022). Machine learning improves early detection of liver fibrosis by quantitative ultrasound radiomics. IEEE International Ultrasonics Symposium, 2022 DOI: https://doi.org/10.1109/IUS54386.2022.9957180

Amin, R., Yasmin, R., Ruhi, S., Rahman, M. H., & Reza, M. S. (2023). Prediction of chronic liver disease patients using integrated projection based statistical feature extraction with machine learning algorithms. Informatics in Medicine Unlocked, 36, 101155. DOI: https://doi.org/10.1016/j.imu.2022.101155

Bhute, P., Gahane, S., Kapse, A., Mohadure, S., Raut, E., & Khode, P. (2024, December). Cloud Cryptography in IT Infrastructure: A Comprehensive Review and Future Directions. In 2024 International Conference on Sustainable Communication Networks and Application (ICSCNA) (pp. 528-533). IEEE. DOI: https://doi.org/10.1109/ICSCNA63714.2024.10863893

Blesl, A., & Stadlbauer, V. (2021). The gut-liver axis in cholestatic liver diseases. In Nutrients (Vol. 13, Issue 3, pp. 1–32). https://doi.org/10.3390/nu13031018 DOI: https://doi.org/10.3390/nu13031018

Devarbhavi, H., Asrani, S. K., Arab, J. P., Nartey, Y. A., Pose, E., & Kamath, P. S. (2023). Global burden of liver disease: 2023 update. Journal of Hepatology, 79(2), 516–537. https://doi.org/10.1016/j.jhep.2023.03.017 DOI: https://doi.org/10.1016/j.jhep.2023.03.017

Ehman, R. L. (2022). Magnetic resonance elastography: from invention to standard of care. Abdominal Radiology, 47(9), 3028–3036. https://doi.org/10.1007/s00261-022-03597-z DOI: https://doi.org/10.1007/s00261-022-03597-z

Endah, M., Wijaya, R. N., Ahsan, H. K., & Endah Hiswati, M. (2023). Enhancing cirrhosis detection: A deep learning approach with convolutional neural networks. Journal of Soft Computing Exploration. https://doi.org/10.52465/joscex.v4i4.226 DOI: https://doi.org/10.52465/joscex.v4i4.226

Hamid, K., Asif, A., Abbasi, W., & Sabih, D. (2017). Machine learning with abstention for automated liver disease diagnosis. 2017 International Conference on Frontiers of Information Technology (FIT), 356–361. DOI: https://doi.org/10.1109/FIT.2017.00070

Ignat, S.-R., Dinescu, S., Hermenean, A., & Costache, M. (2020). Cellular interplay as a consequence of inflammatory signals leading to liver fibrosis development. Cells, 9(2), 461. DOI: https://doi.org/10.3390/cells9020461

Kaiser, S., Sziranyi, J., & Groß, D. (2020). The hepatopathologist Hans Popper (1903–1988). Der Pathologe, 41(1), 30–38. https://doi.org/10.1007/s00292-019-0619-y DOI: https://doi.org/10.1007/s00292-019-0619-y

Liu, Z.-P., Ouyang, G.-Q., Huang, G.-Z., Wei, J., Dai, L., He, S.-Q., & Yuan, G.-D. (2023). Global burden of cirrhosis and other chronic liver diseases due to nonalcoholic fatty liver disease, 1990-2019. World Journal of Hepatology, 15(11), 1210–1225. https://doi.org/10.4254/wjh.v15.i11.1210 DOI: https://doi.org/10.4254/wjh.v15.i11.1210

Mazen, T. Sh. (2023). Machine Learning-based Segmentation to the Prediction of Liver Cirrhosis. International Journal of Computer Applications, 185(23), 13–20. https://doi.org/10.5120/ijca2023922973 DOI: https://doi.org/10.5120/ijca2023922973

Meza, J. K. S., Yepes, D. O., Rodrigo-Ilarri, J., & Cassiraga, E. (2019). Predictive analysis of urban waste generation for the city of Bogotá, Colombia, through the implementation of decision trees-based machine learning, support vector machines and artificial neural networks. Heliyon, 5(11). DOI: https://doi.org/10.1016/j.heliyon.2019.e02810

Mousa, O. Y., & Kamath, P. S. (2021a). A History of the Assessment of Liver Performance. In Clinical Liver Disease (Vol. 18, Issue S1, pp. 28–48). https://doi.org/10.1002/cld.1100 DOI: https://doi.org/10.1002/cld.1100

Mousa, O. Y., & Kamath, P. S. (2021b). An Official Learning Resource of AASLD review a History of the assessment of liver Performance. 28 | CliniCal Liver Disease, 18, 1. https://doi.org/10.1002/cld.1100/suppinfo DOI: https://doi.org/10.1002/cld.1100

Ndow, Gibril, Erwan Vo-Quang, Yusuke Shimakawa, Amie Ceesay, Saydiba Tamba, Harr F. Njai, Lamin Bojang et al. "Clinical characteristics and outcomes of patients with cirrhosis and hepatocellular carcinoma in The Gambia, west Africa: a prospective cohort study." The Lancet Global Health 11, no. 9 (2023): e1383-e1392. DOI: https://doi.org/10.1016/S2214-109X(23)00263-2

Prakash, B., Vennela, D., Lakshmi, D., & Priyanka, S. S. (2024). Stage Prediction of Liver Cirrhosis Disease using Machine Learning. 1–6. https://doi.org/10.1109/icecsp61809.2024.10698096 DOI: https://doi.org/10.1109/ICECSP61809.2024.10698096

Raschka, S., Patterson, J., & Nolet, C. (2020). Machine learning in python: Main developments and technology trends in data science, machine learning, and artificial intelligence. Information, 11(4), 193. DOI: https://doi.org/10.3390/info11040193

Singh, A., & Kaur, P. J. (2019). Analysis of Software Development Life Cycle Models BT - Proceeding of the Second International Conference on Microelectronics, Computing & Communication Systems (MCCS 2017) (V. Nath & J. K. Mandal (Eds.); pp. 689–699). Springer Singapore DOI: https://doi.org/10.1007/978-981-10-8234-4_55

Smith, D. R. (2022). Mechanical evaluation of structure and function in fibrous soft tissue using MR elastography. University of Delaware.

Wieczorek, M., Weston, A., Ledenko, M., Thomas, J. N., Carter, R., & Patel, T. (2022). A deep learning approach for detecting liver cirrhosis from volatolomic analysis of exhaled breath. Frontiers in Medicine, 9, 992703. DOI: https://doi.org/10.3389/fmed.2022.992703

Wong, A., Anantrasirichai, N., Chalidabhongse, T. H., Palasuwan, D., Palasuwan, A., & Bull, D. (2021). Analysis of vision-based abnormal red blood cell classification. ArXiv Preprint ArXiv:2106.00389.

Yoo, J. J., Namdar, K., McIntosh, C., Khalvati, F., & Rogalla, P. (2022). A Comprehensive Study of Radiomics-based Machine Learning for Fibrosis Detection. ArXiv Preprint ArXiv:2211.14396.

Yoo, J. J., Namdar, K., McIntosh, C., Khalvati, F., & Rogalla, P. (2022). A Comprehensive Study of Radiomics-based Machine Learning for Fibrosis Detection. ArXiv Preprint ArXiv:2211.14396.

Downloads

Published

04-08-2025

Issue

Section

Research Articles

How to Cite

[1]
Adeoti Babajide E, Lawani Benjamin, Ayoola Oluwatorera, Mgbeahuruike Emmanuel, Adebanjo Samuel A, and Oladunjoye Michael, “Detection of Liver Cirrhosis using a Web-Based Convolutional Neural Network System”, Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, vol. 11, no. 4, pp. 316–321, Aug. 2025, doi: 10.32628/CSEIT25113395.