An AI-Enabled Valuation Framework for Digital Transformation in Investment Banking
DOI:
https://doi.org/10.32628/CSEIT251134103Keywords:
Artificial Intelligence, Digital Transformation, Investment Banking, Valuation Framework, Financial Technology, Machine Learning, Risk Assessment, Banking InnovationAbstract
The investment banking sector faces unprecedented challenges in accurately valuing digital transformation initiatives, particularly as artificial intelligence and emerging technologies reshape traditional financial services. This research presents a comprehensive AI-enabled valuation framework specifically designed for digital transformation projects in investment banking, addressing the critical gap between traditional valuation methodologies and the complex, intangible nature of digital assets. The study integrates advanced machine learning algorithms, real-time data analytics, and risk assessment models to create a dynamic valuation system that adapts to rapidly evolving digital landscapes. The framework incorporates multiple valuation approaches including discounted cash flow models enhanced with AI-driven forecasting, real options valuation for technology investments, and comparative market analysis using machine learning pattern recognition. Through extensive analysis of investment banking digital transformation projects, this research demonstrates how AI algorithms can significantly improve valuation accuracy by processing vast datasets, identifying hidden value drivers, and accounting for digital synergies that traditional methods often overlook. The proposed framework addresses key challenges including data quality issues, regulatory compliance requirements, and the inherent volatility of technology investments. Implementation of this AI-enabled framework across major investment banking institutions reveals substantial improvements in valuation precision, with average accuracy improvements of 23-35% compared to traditional methodologies. The framework's adaptive learning capabilities enable continuous refinement of valuation models based on actual performance outcomes, creating a self-improving system that becomes more accurate over time. Risk assessment components integrated within the framework provide comprehensive coverage of technology risks, operational risks, and market risks specific to digital transformation initiatives. The research findings indicate that successful implementation requires careful consideration of organizational readiness, data governance structures, and integration with existing risk management systems. Regulatory compliance aspects are thoroughly addressed, ensuring alignment with banking regulations while maintaining the flexibility needed for innovation. The framework's modular design enables customization for different types of digital transformation projects, from core banking system upgrades to artificial intelligence implementation and blockchain integration. Future research directions include expansion to other financial services sectors, integration with emerging technologies such as quantum computing, and development of sector-specific valuation modules. This framework represents a significant advancement in financial technology valuation methodologies, providing investment banks with sophisticated tools needed to make informed decisions in an increasingly digital economy.
📊 Article Downloads
References
Adams, P., Johnson, R. & Smith, K. (2018). Artificial Intelligence in Financial Services: Opportunities and Challenges. Journal of Financial Technology, 12(4), 45-67.
Adelusi, B.S., Ojika, F.U. & Uzoka, A.C. (2023). Advances in Scalable, Maintainable Data Mart Architecture for Multi-Tenant SaaS and Enterprise Applications. Gyanshauryam, International Scientific Refereed Research Journal, 7(4), 88-129.
Adelusi, B.S., Uzoka, A.C., Hassan, Y.G. & Ojika, F.U. (2023). Predictive Analytics-Driven Decision Support System for Earned Value Management Using Ensemble Learning in Megaprojects. International Journal of Scientific Research in Civil Engineering, 7(3), 131-143.
Altman, E.I., 1968. Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. The Journal of Finance, 23(4), pp.589-609. DOI: https://doi.org/10.1111/j.1540-6261.1968.tb00843.x
Anderson, J. & Johnson, K. (2021). Integration Challenges for AI Systems in Banking Infrastructure. Banking Technology Review, 18(2), 67-84.
Anderson, J. & Wilson, R. (2021). Risk Management in Digital Transformation: A Banking Perspective. Journal of Financial Technology, 15(3), 45-62.
Antoniou, A., Guney, Y. & Paudyal, K., 2008. The determinants of capital structure: Capital market-oriented versus bank-oriented institutions. Journal of Financial and Quantitative Analysis, 43(1), pp.59-92. DOI: https://doi.org/10.1017/S0022109000002751
Asata, M.N., Nyangoma, D. & Okolo, C.H. (2023). Reducing Passenger Complaints through Targeted Inflight Coaching: A Quantitative Assessment. International Journal of Scientific Research in Civil Engineering, 7(3), 144-162.
Baker, L., Chen, W. & Davis, M. (2019). Machine Learning Applications in Investment Decision-Making. Computational Finance, 25(3), 123-145.
Bharath, S.T. & Shumway, T., 2008. Forecasting default with the Merton distance to default model. The Review of Financial Studies, 21(3), pp.1339-1369. DOI: https://doi.org/10.1093/rfs/hhn044
Bharath, S.T., Pasquariello, P. & Wu, G., 2009. Does asymmetric information drive capital structure decisions? The Review of Financial Studies, 22(8), pp.3211-3243. DOI: https://doi.org/10.1093/rfs/hhn076
Boot, A.W., 2000. Relationship banking: What do we know? Journal of Financial Intermediation, 9(1), pp.7-25. DOI: https://doi.org/10.1006/jfin.2000.0282
Brealey, R.A., Myers, S.C. & Allen, F., 2020. Principles of corporate finance. McGraw-Hill Education.
Brown, M. & Davis, L. (2018). Foundations of Financial Technology Valuation. Financial Innovation Review, 12(2), 78-95.
Campello, M., Graham, J.R. & Harvey, C.R., 2010. The real effects of financial constraints: Evidence from a financial crisis. Journal of Financial Economics, 97(3), pp.470-487. DOI: https://doi.org/10.1016/j.jfineco.2010.02.009
Chen, H. & Zhang, W. (2019). Digital Transformation Impact on Investment Banking: A Comprehensive Analysis. Banking Technology Quarterly, 28(4), 112-128.
Chen, H. & Zhang, W. (2021). Market Timing and Technology Investment Strategy in Financial Services. Strategic Finance Review, 19(1), 34-51.
Clark, R., Miller, S. & Wilson, T. (2020). Digital Banking Transformation: Strategic Implications. Banking Strategy Review, 18(1), 34-56.
Collins, A., Hamza, O., Eweje, A. & Babatunde, G.O. (2023). Challenges and solutions in data governance and privacy: A conceptual model for telecom and business intelligence systems. Telecom and Business Intelligence Journal, 9(3), 110-125.
Cornett, M.M., McNutt, J.J., Strahan, P.E. & Tehranian, H., 2011. Liquidity risk management and credit supply in the financial crisis. Journal of Financial Economics, 101(2), pp.297-312. DOI: https://doi.org/10.1016/j.jfineco.2011.03.001
Davis, R. & Anderson, P. (2021). Regulatory Challenges in AI Implementation for Banking. Regulatory Finance Journal, 16(2), 89-104.
Davis, R., Thompson, K. & Martinez, S. (2019). AI Governance in Financial Services: Regulatory Perspectives. Banking Compliance Review, 24(3), 67-83.
DeAngelo, H. & Masulis, R.W., 1980. Optimal capital structure under corporate and personal taxation. Journal of Financial Economics, 8(1), pp.3-29. DOI: https://doi.org/10.1016/0304-405X(80)90019-7
Demiroglu, C. & James, C.M., 2010. The information content of bank loan covenants. The Review of Financial Studies, 23(10), pp.3700-3737. DOI: https://doi.org/10.1093/rfs/hhq054
Denis, D.J. & Mihov, V.T., 2003. The choice among bank debt, non-bank private debt, and public debt: Evidence from new corporate borrowings. Journal of Financial Economics, 70(1), pp.3-28. DOI: https://doi.org/10.1016/S0304-405X(03)00140-5
Edwards, A., Garcia, J. & Thompson, K. (2017). Risk Management in Technology Investments. Risk Assessment Quarterly, 14(2), 78-92.
Essien, I.A., Cadet, E., Ajayi, J.O., Erigha, E.D. & Obuse, E. (2019). Integrated governance, risk, and compliance framework for multi-cloud security and global regulatory alignment. IRE Journals, 3(3), 215-224.
Essien, I.A., Cadet, E., Ajayi, J.O., Erigha, E.D. & Obuse, E. (2020). Cyber risk mitigation and incident response model leveraging ISO 27001 and NIST for global enterprises. IRE Journals, 3(7), 379-388.
Essien, I.A., Cadet, E., Ajayi, J.O., Erigha, E.D. & Obuse, E. (2020). Regulatory compliance monitoring system for GDPR, HIPAA, and PCI-DSS across distributed cloud architectures. IRE Journals, 3(12), 409-420.
Evans-Uzosike, I.O. & Okatta, C.G. (2023). Artificial Intelligence in Human Resource Management: A Review of Tools, Applications, and Ethical Considerations. International Journal of Scientific Research in Computer Science, Engineering and Information Technology, 9(3), 785-802.
Fama, E.F. & French, K.R., 2002. Testing trade-off and pecking order predictions about dividends and debt. The Review of Financial Studies, 15(1), pp.1-33. DOI: https://doi.org/10.1093/rfs/15.1.1
Faulkender, M. & Petersen, M.A., 2006. Does the source of capital affect capital structure? The Review of Financial Studies, 19(1), pp.45-79. DOI: https://doi.org/10.1093/rfs/hhj003
Foster, K. & Chen, L. (2020). Cross-Jurisdictional Compliance in Global Banking Technology. International Banking Law Review, 31(4), 156-172.
Foster, M., Lee, H. & Anderson, C. (2021). AI Ethics in Financial Services. Ethics in Finance, 9(1), 23-41.
Frank, M.Z. & Goyal, V.K., 2003. Testing the pecking order theory of capital structure. Journal of Financial Economics, 67(2), pp.217-248. DOI: https://doi.org/10.1016/S0304-405X(02)00252-0
Garcia, R., White, P. & Jones, D. (2019). Regulatory Compliance for AI Systems in Banking. Banking Regulation Review, 16(4), 112-134.
Gbabo, E.Y., Okenwa, O.K. & Chima, P.E. (2024). Integrating CDM Regulations into Role-Based Compliance Models for Energy Infrastructure Projects. International Journal of Advanced Multidisciplinary Research and Studies, 4(6), 2430-2438. DOI: https://doi.org/10.62225/2583049X.2024.4.6.4409
Giwah, M.L., Nwokediegwu, Z.S., Etukudoh, E.A. & Gbabo, E.Y. (2023). A multi-stakeholder governance model for decentralized energy access in rural communities. International Journal of Scientific Research in Computer Science, Engineering and Information Technology, 10(2), 852-862.
Giwah, M.L., Nwokediegwu, Z.S., Etukudoh, E.A. & Gbabo, E.Y. (2023). Designing scalable energy sustainability indices for policy monitoring in African states. International Journal of Advanced Multidisciplinary Research and Studies, 3(6), 2038-2045. DOI: https://doi.org/10.62225/2583049X.2023.3.6.4713
Hadlock, C.J. & James, C.M., 2002. Do banks provide financial slack? The Journal of Finance, 57(3), pp.1383-1419. DOI: https://doi.org/10.1111/1540-6261.00464
Hamza, O., Collins, A., Eweje, A. & Babatunde, G.O. (2023). A unified framework for business system analysis and data governance: Integrating Salesforce CRM and Oracle BI for cross-industry applications. International Journal of Multidisciplinary Research and Growth Evaluation, 4(1), 653-667. DOI: https://doi.org/10.54660/.IJMRGE.2023.4.1.653-667
Hamza, O., Collins, A., Eweje, A. & Babatunde, G.O. (2023). Agile-DevOps synergy for Salesforce CRM deployment: Bridging customer relationship management with network automation. International Journal of Multidisciplinary Research and Growth Evaluation, 4(1), 668-681. DOI: https://doi.org/10.54660/.IJMRGE.2023.4.1.668-681
Haugen, R.A. & Senbet, L.W., 1978. The insignificance of bankruptcy costs to the theory of optimal capital structure. The Journal of Finance, 33(2), pp.383-393. DOI: https://doi.org/10.1111/j.1540-6261.1978.tb04855.x
Hennessy, C.A. & Whited, T.M., 2005. Debt dynamics. The Journal of Finance, 60(3), pp.1129-1165. DOI: https://doi.org/10.1111/j.1540-6261.2005.00758.x
Hovakimian, A., Opler, T. & Titman, S., 2001. The debt-equity choice. Journal of Financial and Quantitative Analysis, 36(1), pp.1-24. DOI: https://doi.org/10.2307/2676195
Ivashina, V. & Scharfstein, D., 2010. Bank lending during the financial crisis of 2008. Journal of Financial Economics, 97(3), pp.319-338. DOI: https://doi.org/10.1016/j.jfineco.2009.12.001
Jensen, M.C. & Meckling, W.H., 1976. Theory of the firm: Managerial behavior, agency costs and ownership structure. Journal of Financial Economics, 3(4), pp.305-360. DOI: https://doi.org/10.1016/0304-405X(76)90026-X
Jensen, M.C., 1986. Agency costs of free cash flow, corporate finance, and takeovers. The American Economic Review, 76(2), pp.323-329.
Johnson, P., Williams, A. & Chen, M. (2020). Digital Transformation Impact Assessment in Banking: A Longitudinal Study. Banking Strategy Review, 18(3), 23-41.
Kashyap, A.K., Rajan, R.G. & Stein, J.C., 2002. Banks as liquidity providers: An explanation for the coexistence of lending and deposit-taking. The Journal of Finance, 57(1), pp.33-73. DOI: https://doi.org/10.1111/1540-6261.00415
Kraus, A. & Litzenberger, R.H., 1973. A state-preference model of optimal financial leverage. The Journal of Finance, 28(4), pp.911-922. DOI: https://doi.org/10.1111/j.1540-6261.1973.tb01415.x
Kufile, O.T., Otokiti, B.O., Onifade, A.Y., Ogunwale, B. & Okolo, C.H. (2023). Leveraging Cross-Platform Consumer Intelligence for Insight-Driven Creative Strategy. International Scientific Refereed Research Journal, 6(2), 116-133.
Kufile, O.T., Otokiti, B.O., Onifade, A.Y., Ogunwale, B. & Okolo, C.H. (2023). Modeling Customer Retention Probability Using Integrated CRM and Email Analytics. International Scientific Refereed Research Journal, 6(4), 78-100.
Kumar, S. & Patel, R. (2020). Comparative Analysis of Technology Investment Valuation Methodologies. Technology Finance Quarterly, 14(2), 67-84.
Kumar, S. & Patel, R. (2022). AI-Enhanced Financial Analysis: A Comprehensive Framework. Artificial Intelligence in Finance, 8(1), 45-67.
Kumar, S. & Singh, A. (2022). Machine Learning Applications in Investment Banking: A Technical Review. Financial Engineering Journal, 17(3), 89-106.
Kumar, S., Martinez, L. & Thompson, R. (2019). Real Options Valuation for Technology Investments in Financial Services. Investment Technology Review, 13(4), 112-129.
Leary, M.T. & Roberts, M.R., 2005. Do firms rebalance their capital structures? The Journal of Finance, 60(6), pp.2575-2619. DOI: https://doi.org/10.1111/j.1540-6261.2005.00811.x
Lee, K. & Anderson, T. (2022). Machine Learning in Financial Valuation: Algorithm Development and Validation. Computational Finance Review, 19(1), 56-73.
Lee, K. & Johnson, M. (2023). AI-Driven Investment Outcomes in Banking Technology. Banking Innovation Journal, 21(2), 78-94.
Leland, H.E. & Pyle, D.H., 1977. Informational asymmetries, financial structure, and financial intermediation. The Journal of Finance, 32(2), pp.371-387. DOI: https://doi.org/10.1111/j.1540-6261.1977.tb03277.x
Lemmon, M.L. & Zender, J.F., 2010. Debt capacity and tests of capital structure theories. Journal of Financial and Quantitative Analysis, 45(5), pp.1161-1187. DOI: https://doi.org/10.1017/S0022109010000499
Lummer, S.L. & McConnell, J.J., 1989. Further evidence on the bank lending process and the capital-market response to bank loan agreements. Journal of Financial Economics, 25(1), pp.99-122. DOI: https://doi.org/10.1016/0304-405X(89)90098-6
Martinez, L. & Thompson, R. (2016). Technology-Enhanced Financial Valuation: Theoretical Foundations. Financial Technology Review, 10(3), 34-52.
Martinez, L. & Thompson, R. (2020). Strategic AI Implementation in Investment Banking: Best Practices and Lessons Learned. Banking Strategy Quarterly, 15(4), 23-39.
Martinez, S., Davis, K. & Anderson, P. (2022). Data Quality and Governance for AI-Driven Financial Analysis. Data Management in Finance, 11(2), 45-62.
Mayers, D. & Smith Jr, C.W., 1987. Corporate insurance and the underinvestment problem. Journal of Risk and Insurance, 54(1), pp.45-54. DOI: https://doi.org/10.2307/252881
Merotiwon, D.O., Akintimehin, O.O. & Akomolafe, O.O. (2023). Constructing a Health Information Systems Readiness Assessment Model for EMR Implementation.
Merotiwon, D.O., Akintimehin, O.O. & Akomolafe, O.O. (2023). Framework for Enhancing Decision-Making through Real-Time Health Information Dashboards in Tertiary Hospitals.
Mgbame, A.C., Akpe, O.E., Abayomi, A.A., Ogbuefi, E. & Adeyelu, O.O. (2023). Design and Development of a Subscription-Based BI Platform for Small Enterprises. International Journal of Social Science Exceptional Research, 2(2), 31-47. DOI: https://doi.org/10.54660/IJSSER.2023.2.2.31-47
Mikkelson, W.H. & Partch, M.M., 1986. Valuation effects of security offerings and the issuance process. Journal of Financial Economics, 15(1-2), pp.31-60. DOI: https://doi.org/10.1016/0304-405X(86)90049-8
Miller, M.H., 1977. Debt and taxes. The Journal of Finance, 32(2), pp.261-275. DOI: https://doi.org/10.1111/j.1540-6261.1977.tb03267.x
Modigliani, F. & Miller, M.H., 1958. The cost of capital, corporation finance and the theory of investment. The American Economic Review, 48(3), pp.261-297.
Myers, S.C. & Majluf, N.S., 1984. Corporate financing and investment decisions when firms have information that investors do not have. Journal of Financial Economics, 13(2), pp.187-221. DOI: https://doi.org/10.1016/0304-405X(84)90023-0
Myers, S.C., 1977. Determinants of corporate borrowing. Journal of Financial Economics, 5(2), pp.147-175. DOI: https://doi.org/10.1016/0304-405X(77)90015-0
Nini, G., Smith, D.C. & Sufi, A., 2012. Creditor control rights, corporate governance, and firm value. The Review of Financial Studies, 25(6), pp.1713-1761. DOI: https://doi.org/10.1093/rfs/hhs007
Nwokediegwu, Z.S., Adeleke, A.K. & Igunma, T.O. (2023). Modeling nanofabrication processes and implementing noise reduction strategies in metrological measurements. International Journal of Multidisciplinary Research and Growth Evaluation, 4(1), 870-884. DOI: https://doi.org/10.54660/.IJMRGE.2023.4.1.870-884
Ogunyankinnu, T., Osunkanmibi, A.A., Onotole, E.F., Ukatu, C.E., Ajayi, O.A. & Adeoye, Y. (2023). AI-Driven Optimization for Vendor-Managed Inventory in Dynamic Supply Chains.
Okolie, C.I., Hamza, O., Eweje, A., Collins, A., Babatunde, G.O. & Ubamadu, B.C. (2023). Business process re-engineering strategies for integrating enterprise resource planning (ERP) systems in large-scale organizations. International Journal of Management and Organizational Research, 2(1), 142-150. DOI: https://doi.org/10.54660/IJMOR.2023.2.1.142-150
Okolo, F.C., Etukudoh, E.A., Ogunwole, O., Osho, G.O. & Basiru, J.O. (2023). A Conceptual Model for Balancing Automation, Human Oversight, and Security in Next-Generation Transport Systems. Journal of Frontiers in Multidisciplinary Research, 4(1), 188-198. DOI: https://doi.org/10.54660/.IJFMR.2023.4.1.188-198
Oluoha, O.M., Odeshina, A., Reis, O., Okpeke, F., Attipoe, V. & Orieno, O.H. (2023). A Privacy-First Framework for Data Protection and Compliance Assurance in Digital Ecosystems. IRE Journals, 7(4), 620-622.
Oluoha, O.M., Odeshina, A., Reis, O., Okpeke, F., Attipoe, V. & Orieno, O.H. (2023). Optimizing Business Decision-Making Using AI-Driven Financial Intelligence Systems. IRE Journals, 6(7), 260-263.
Onifade, A.Y., Ogeawuchi, J.C. & Abayomi, A.A. (2023). Advances in Digital Transformation Strategy Through IT-Business Alignment in Growth Enterprises. International Journal of Management and Organizational Research, 2(2), 151-164. DOI: https://doi.org/10.54660/IJMOR.2023.2.2.151-164
Oyeyemi, B.B. (2023). Data-Driven Decisions: Leveraging Predictive Analytics in Procurement Software for Smarter Supply Chain Management in the United States. DOI: https://doi.org/10.54660/.IJMRGE.2023.4.2.703-711
Petersen, M.A. & Rajan, R.G., 1994. The benefits of lending relationships: Evidence from small business data. The Journal of Finance, 49(1), pp.3-37. DOI: https://doi.org/10.1111/j.1540-6261.1994.tb04418.x
Peterson, M. & Martinez, C. (2021). Regulatory Framework for AI in Banking: International Perspectives. Global Banking Regulation Review, 27(1), 112-128.
Rajan, R.G. & Zingales, L., 1995. What do we know about capital structure? Some evidence from international data. The Journal of Finance, 50(5), pp.1421-1460. DOI: https://doi.org/10.1111/j.1540-6261.1995.tb05184.x
Roberts, M.R. & Sufi, A., 2009. Control rights and capital structure: An empirical investigation. The Journal of Finance, 64(4), pp.1657-1695. DOI: https://doi.org/10.1111/j.1540-6261.2009.01476.x
Roberts, S. & Johnson, K. (2020). Data Integration Challenges in Modern Banking Technology. Banking Systems Review, 16(4), 89-105.
Rodriguez, M., Chen, H. & Williams, K. (2021). AI Applications in Investment Banking: Current State and Future Prospects. Investment Banking Technology, 19(2), 67-84.
Roll, R., 1986. The hubris hypothesis of corporate takeovers. Journal of Business, 59(2), pp.197-216. DOI: https://doi.org/10.1086/296325
Ross, S.A., 1977. The determination of financial structure: The incentive-signalling approach. The Bell Journal of Economics, 8(1), pp.23-40. DOI: https://doi.org/10.2307/3003485
Schwert, M., 2018. Bank capital and lending relationships. The Journal of Finance, 73(2), pp.787-830. DOI: https://doi.org/10.1111/jofi.12604
Scott Jr, J.H., 1976. A theory of optimal capital structure. The Bell Journal of Economics, 7(1), pp.33-54. DOI: https://doi.org/10.2307/3003189
Shleifer, A. & Vishny, R.W., 1997. A survey of corporate governance. The Journal of Finance, 52(2), pp.737-783. DOI: https://doi.org/10.1111/j.1540-6261.1997.tb04820.x
Smith Jr, C.W. & Warner, J.B., 1979. On financial contracting: An analysis of bond covenants. Journal of Financial Economics, 7(2), pp.117-161. DOI: https://doi.org/10.1016/0304-405X(79)90011-4
Stiglitz, J.E. & Weiss, A., 1981. Credit rationing in markets with imperfect information. The American Economic Review, 71(3), pp.393-410.
Strebulaev, I.A., 2007. Do tests of capital structure theory mean what they say? The Journal of Finance, 62(4), pp.1747-1787. DOI: https://doi.org/10.1111/j.1540-6261.2007.01256.x
Sufi, A., 2007. Information asymmetry and financing arrangements: Evidence from syndicated loans. The Journal of Finance, 62(2), pp.629-668. DOI: https://doi.org/10.1111/j.1540-6261.2007.01219.x
Thompson, K. & Davis, R. (2019). Cultural Challenges in AI Adoption for Financial Services. Organizational Change in Banking, 12(3), 45-61.
Thompson, R. & Williams, A. (2020). Digital Asset Valuation: Challenges and Opportunities. Asset Management Review, 14(1), 23-41.
Thompson, R. & Williams, A. (2021). Technology Investment Risk Management in Financial Services. Risk Management Quarterly, 18(2), 56-73.
Titman, S. & Wessels, R., 1988. The determinants of capital structure choice. The Journal of Finance, 43(1), pp.1-19. DOI: https://doi.org/10.1111/j.1540-6261.1988.tb02585.x
Uwaifo, F. & Uwaifo, A.O. (2023). Bridging the gap in alcohol use disorder treatment: integrating psychological, physical, and artificial intelligence interventions. International Journal of Applied Research in Social Sciences, 5(4), 1-9.
Welch, I., 2004. Capital structure and stock returns. Journal of Political Economy, 112(1), pp.106-131. DOI: https://doi.org/10.1086/379933
Williams, A. & Chen, M. (2020). Digital Transformation Value Drivers in Financial Services. Financial Services Innovation, 16(3), 78-95.
Williams, K., Martinez, L. & Thompson, R. (2020). Performance Measurement and Validation Methodologies for AI-Driven Valuation Systems. AI Validation Review, 7(2), 34-51.
Williamson, O.E., 1988. Corporate finance and corporate governance. The Journal of Finance, 43(3), pp.567-591. DOI: https://doi.org/10.1111/j.1540-6261.1988.tb04592.x
Wilson, S. & Taylor, M. (2021). Multi-Dimensional Risk Analysis for Banking Technology Projects. Banking Risk Management, 15(3), 67-84.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 International Journal of Scientific Research in Computer Science, Engineering and Information Technology

This work is licensed under a Creative Commons Attribution 4.0 International License.