Convolutional Neural Network and Human Age Detection : A Pilot Study

Authors

  • Jacob A. Ogar Department of Computer Science, Faculty of Computing, Federal University of Lafia, Lafia, Nigeria Author
  • M. M. Liman Department of Computer Science, Faculty of Computing, Federal University of Lafia, Lafia, Nigeria Author
  • C. A. Barka Department of Computer Science, Faculty of Computing, Federal University of Lafia, Lafia, Nigeria Author

DOI:

https://doi.org/10.32628/CSEIT2612134

Keywords:

Human Age, Convolutional Neural Network, Artificial Intelligence Techniques, Detection, Prediction

Abstract

The problem of age detection in age required job has become a challenging issue in contemporary times. Job seekers falsify their ages in order to secure jobs within the required age limits. Agetoolpie, one of the existing sophisticated age prediction systems available online, captures images improperly. Thus, this research is aimed at designing a deep model to predict age of an individual, using features from image. To achieve this aim, Cross Industrial Standard Process Data Mining (CRISP-DM) is the methodology adopted. Dataset acquired from Kaggle machine learning data repository was used to train & test the system, while the system predicts and from the captured image it predicts the age of individuals based on the Convolutional neural network (CNN or ConvNet) algorithm implemented on the system. The performance of the proposed system, ConvNet AgeDet, was compared with that of Agetoolpie in terms of precision, sensitivity, specificity, and accuracy. The result shows that the proposed system has a better age prediction accuracy of 71% than Agetoolpie’s 67%. The study concludes that artificial intelligence models are capable of solving issues of age falsification. The ConvNet AgeDet is recommended to organizations interested in getting the real ages of job applicants. Researchers are enjoined to delve more into AI-driven age detection and prediction.

Downloads

Download data is not yet available.

References

Adeghe, E. P., Okolo, C. A., & Ojeyinka, O. T. (2024). The role of big data in healthcare: a review of implications for patient outcomes and treatment personalization. World Journal of Biology Pharmacy and Health Sciences, 17(3), 198-204. DOI: https://doi.org/10.30574/wjbphs.2024.17.3.0133

Ahmed, Z., Mohamed, K., Zeeshan, S., & Dong, X. (2020). Artificial intelligence with multi- functional machine learning platform development for better healthcare and precision medicine. Database, 2020, baaa010. DOI: https://doi.org/10.1093/database/baaa010

Alsakka, F., Assaf, S., El-Chami, I., & Al-Hussein, M. (2023). Computer vision applications in offsite construction. Automation in Construction, 154, 104980. DOI: https://doi.org/10.1016/j.autcon.2023.104980

Alsaleh, A., & Perkgoz, C. (2023). A space and time efficient convolutional neural network for age group estimation from facial images. Peer J Comput. Sci., 9, e1395 http://doi.org/10.7717/peerj-cs.1395 DOI: https://doi.org/10.7717/peerj-cs.1395

Ba¸sar, R., Ocak, Ö., Erturk, A., & de la Roche, M. (2025). Leveraging machine learning techniques to predict cardiovascular heart disease. Information, 16, 639. https:// doi.org/10.3390/info16080639 DOI: https://doi.org/10.3390/info16080639

Babatunde, L. A., Etim, E. D., Essien, I. A., Cadet, E., Ajayi, J. O., Erigha, E. D., & Obuse, E. (2020). Adversarial machine learning in cybersecurity: Vulnerabilities and defense strategies. Journal of Frontiers in Multidisciplinary Research, 1(2), 31-45. DOI: https://doi.org/10.54660/.JFMR.2020.1.2.31-45 DOI: https://doi.org/10.54660/.JFMR.2020.1.2.31-45

Basavaraj, P. G.V., & Rafi, M. (2015). Human age estimation through fingerprint. International Journal of Innovative Research in Computer and Communication Engineering, 3(4), 3530-3534. Doi: 10.15680/ijircce.2015.0304125

Bishop, C. M. (2006) Pattern recognition and machine learning. Springer, https://link.springer.com/book/9780387310732

Cameriere, R., Giuliodori, A., Zampi, M., Galic, I., Cingolani, M., & Pagliara, F. (2015). Age estimation in children and young adolescents for forensic purposes using fourth cervical vertebra (C4). International Journal of Legal Medicine, 129, 347-355. DOI: https://doi.org/10.1007/s00414-014-1112-z

Cao, Q., Shen, L., Xie, W., Parkhi, O. M., & Zisserman, A. (2018, May 15). Vggface2: a dataset for recognising faces across pose and age. 2018 13th IEEE international conference on automatic face & gesture recognition (FG 2018), IEEE, 67-74. DOI: https://doi.org/10.1109/FG.2018.00020

Cole, J. H., Poudel, R. P. K., Tsagkrasoulis, D., Caan, M. W. A., Steves, C., Spector, T. D., & Montana, G. (2017). Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker. Neuro Image, 163,115-124. DOI: https://doi.org/10.1016/j.neuroimage.2017.07.059

de Hond, A. A., Leeuwenberg, A. M., Hooft, L., Kant, I. M., Nijman, S. W., van Os, H. J., ... & Moons, K. G. (2022). Guidelines and quality criteria for artificial intelligence-based prediction models in healthcare: a scoping review. NPJ digital medicine, 5(1), 2. DOI: https://doi.org/10.1038/s41746-021-00549-7

Dosenbach, N. U. F., Nardos, B., Cohen, A. L., Fair, D. A., Power, J. D., Church, J. A., Nelson, S. M., Wig, G. S., Vogel, A. C., & Lessov-Schlaggar, C. N. (2010). Prediction of individual brain maturity using fMRI. Science, 329, 1358-1361. DOI: https://doi.org/10.1126/science.1194144

Dyrmann, M., Henrik K., & Henrik, S. M. (2016). Plant species classification using deep convolutional neural network. Biosystems Engineering, 151, 72-80. DOI: https://doi.org/10.1016/j.biosystemseng.2016.08.024

Essien, I. O., Etim, E. D., Obuse, E., Cadet, E., Ajayi, J. O., Erigha, E. D., & Babatunde, L. A. (2021). Neural network-based phishing attack detection and prevention systems. Journal of Frontiers in Multidisciplinary Research, 2(2), 222-238. DOI: https://doi.org/10.54660/.JFMR.2021.2.2.222-238 DOI: https://doi.org/10.54660/.JFMR.2021.2.2.222-238

Fayyaz, M., Hajizadeh Saffar, M., Sabokrou, M., & Fathy, M., Klette, R., & Huang, F. (2016). STFCN: Spatio-Temporal FCN for semantic video segmentation. 10.48550/arXiv.1608.05971.

Fukai, H., Nishie, Y., Abiko, K., Mitsukura, Y., Fukumi, M., & Tanaka, M. (2016). An age estimation system on the AIBO. Automation and Systems, 2551-2554.

Gajiwala C. (2025). The rise of deep learning and neural networks: Revolutionizing artificial intelligence. European Journal of Computer Science and Information Technology, 13 (17), 88-99. DOI: https://doi.org/10.37745/ejcsit.2013/vol13n178898

Giuliodori, P. (2017). Artificial neural network-based prediction model for underdog teams in NBA matches. MLSA@ PKDD/ECML, 73-82.

Hao, Z. (2019). Deep learning review and discussion of its future development. MATEC Web of Conferences, 277, 02035. https://doi.org/10.1051/matecconf/201927702035 DOI: https://doi.org/10.1051/matecconf/201927702035

Harun, H., Nsor, M., Akpan, E. E., Ogwo-Ude, U., Ogochukwu, G. N., George, B. W., & Tettey, J. N. A. (2025). Time-series forecasting of urban air pollutant levels using deep learning models. PriMera Scientific Engineering, 7(4), 18-28. DOI: 10.56831/PSEN-07-225 DOI: https://doi.org/10.56831/PSEN-07-225

Holmes, W., Bialik, M., & Fadel, C. (2019). Artificial intelligence in education: Promises and implications for teaching and learning. Center for Curriculum Redesign. https://curriculumredesign.org/wp-content/uploads/AIED-Book-Excerpt-CCR.pdf

Horng, W., Lee, C., & Chen, C. (2010). Classification of age groups based on facial features. Journal of Science and Engineering, 4(3), 183-192.

Ishita, I., & Singha, R. (2019). Porous multi-channel carbon nanofiber electrodes using discarded polystyrene foam as sacrificial material for high performance super capacitors. Journal of Applied Electrochemistry, https://doi.org/10.1007/s10800-020-01433-0 DOI: https://doi.org/10.1007/s10800-020-01433-0

Jung, A-K. (2015). Interpersonal and societal mattering in work: A review and critique. The Career Development Quarterly, 63(3), 194-208. https://doi.org/10.1002/cdq.12013 DOI: https://doi.org/10.1002/cdq.12013

Kalvium, M. (2024). https://blog.kalvium.com/artificial-intelligence-vs-information-technology/

Kühl, N., Goutier, M., Hirt, R., & Satzger, G. (2019). Machine learning in artificial intelligence: Towards a common understanding. Proceedings of the 52nd Hawaii International Conference on System Sciences, 5236-5245. DOI: https://doi.org/10.24251/HICSS.2019.630

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521, 436-444. doi:10.1038/nature14539 DOI: https://doi.org/10.1038/nature14539

Lee, H. Y., Jung, S. E., Oh, Y. N., Choi, A., Yang, W. I., & Shin, K. J. (2015). Epigenetic age signatures in the forensically relevant body fluid of semen: a preliminary study. Forensic Science International: Genetics, 19, 28-34. DOI: https://doi.org/10.1016/j.fsigen.2015.05.014

Levi, G., & Hassner, T. (2015). Age and gender classification using convolutional neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 34-42. DOI: https://doi.org/10.1109/CVPRW.2015.7301352

Luu, K., Ricanek Jr., K., & Y. Suen, C. (2009). Age estimation using active appearance models and support vector machine regression. Theory Applications and System, 314-318. DOI: https://doi.org/10.1109/BTAS.2009.5339053

Melicher, W., Fung, C., Bauer, L., & Jia, L. (2021). Towards a lightweight, hybrid approach for detecting DOM XSS vulnerabilities with machine learning. The Web Conference 2021— Proceedings of the World Wide Web Conference, WWW 2021, 2684–2695. https:// doi. org/ 10. 1145/ 34423 81. 34500 62 DOI: https://doi.org/10.1145/3442381.3450062

Mienye, I. D., & Swart, T. G. (2024). A comprehensive review of deep learning: Architectures, recent advances, and applications. Information, 15, 755. https://doi.org/10.3390/info15120755 DOI: https://doi.org/10.3390/info15120755

Mitchell, T. (1997) Machine learning. McGraw-Hill Higher Education.

Moolayil, J. (2019). Learn Keras for deep neural networks: a fast-track approach to modern deep learning with Python. Apress. 10.1007/978-1-4842-4240-7. DOI: https://doi.org/10.1007/978-1-4842-4240-7

Naskar, A., Mandal, A., Ghosh, A., Saha, M., & Sufian, A. (2019). Convolutional neural networks. 10.13140/RG.2.2.23743.05282.

Nguyen, D. T. et al. (2014). Comparative study of human age estimation with or without preclassification of gender and facial expression. The Scientific World Journal, vol. 2014, 1-15. http://dx.doi.org/10.1155/2014/905269 DOI: https://doi.org/10.1155/2014/905269

Noble, S. U. (2018). Algorithms of oppression: How search engines reinforce racism. NYU Press.

Noble, S. U. (2018). Algorithms of oppression: How search engines reinforce racism. NYU Press.

Nwaimo, C. S., Adegbola, A. E., & Adegbola, M. D. (2024). Transforming healthcare with data analytics: Predictive models for patient outcomes. GSC Biological and Pharmaceutical Sciences, 27(03), 025–035. DOI: https://doi.org/10.30574/gscbps.2024.27.3.0190 DOI: https://doi.org/10.30574/gscbps.2024.27.3.0190

Obiuto, N. C., Adebayo, R. A., Olajiga, O. K. & Festus-Ikhuoria, I. C. (2024). Integrating artificial intelligence in construction management: Improving project efficiency and cost- effectiveness. Int. J. Adv. Multidisc. Res. Stud., 4(2), 639-647. DOI: https://doi.org/10.62225/2583049X.2024.4.2.2550

Ogar, J. A. (2025, April). Human age detection from image using convolutional neural network. B.Sc. project report submitted to the Department of Computer Science, Faculty of Computing, in partial fulfillment of the requirements for the Award of Bachelor of Science (B.Sc.) degree in Computer Science of the Federal University of Lafia, Lafia, Nasarawa State, Nigeria.

Ogbonna, C. E., Nsor, M., Onyehanere, P., Harun, H., Emadoye, A., Obinwanne, I., Ogochukwu, G. N., & John, J. J. (2025). Static malware classification: a comparative analysis of machine learning techniques on byte and opcode features. PriMera Scientific Engineering, 6(5), 19-29. DOI: 10.56831/PSEN-06-197 DOI: https://doi.org/10.56831/PSEN-06-197

Oguntona, T. I. (2023, March). Mitigating the impact of high energy prices on UK households using machine learning techniques. International Journal of Modelling & Applied Science Research, 27(9), 215-230.

Parkhi, O., Vedaldi, A., & Zisserman, A. (2015). Deep face recognition. BMVC 2015- proceedings of the British machine vision conference 2015. British Machine Vision Association. DOI: https://doi.org/10.5244/C.29.41

Pasupuleti, V., Thuraka, B., Kodete, C. S., & Malisetty, S. (2024). Enhancing supply chain agility and sustainability through machine learning: Optimization techniques for logistics and inventory management. Logistics, 8(73). https://doi.org/10.3390/ logistics8030073 DOI: https://doi.org/10.3390/logistics8030073

Peterson, J., Haney, M., & Borrelli, R. A. (2019). An overview of methodologies for cybersecurity vulnerability assessments conducted in nuclear power plants. Nuclear Engineering and Design, 346, 75-84. DOI: https://doi.org/10.1016/j.nucengdes.2019.02.025

Pineda-Jaramillo, J. D. (2019). A review of Machine Learning (ML) algorithms used for modeling travel mode choice. DYNA, 86 (211). DOI: 10.15446/dyna.v86n211.79743 DOI: https://doi.org/10.15446/dyna.v86n211.79743

Pinto-Coelho, L. (2023). How artificial intelligence is shaping medical imaging technology: A survey of innovations and applications. Bioengineering, 10, 1435. https://doi.org/10.3390/bioengineering10121435 DOI: https://doi.org/10.3390/bioengineering10121435

Praba, R., Darshan, G., Roshanraj, K. T., & Surya, P. B. (2021). Study on machine learning algorithms. International Journal of Scientific Research in Computer Science, Engineering and Information Technology, 7(4), 67-72. doi: https://doi.org/10.32628/CSEIT2173105 DOI: https://doi.org/10.32628/CSEIT2173105

Rahman, M. A., Aonty, S. S., Deb, K., & Sarker, I. H. (2023). Attention-based human age estimation from face images to enhance public security. Data, 8, 145. https://doi.org/10.3390/data8100145 DOI: https://doi.org/10.3390/data8100145

Razzaq, K., & Shah, M. (2025). Machine learning and deep learning paradigms: From techniques to practical applications and research frontiers. Computers, 14(93). https://doi.org/10.3390/computers14030093 DOI: https://doi.org/10.3390/computers14030093

Regona, M., Yigitcanlar, T., Hon, C. K. H., & Teo, M. (2023). Mapping two decades of AI in construction research: a scientometric analysis from the sustainability and construction phases lenses. Buildings, 13, 2346. https://doi.org/10.3390/buildings13092346 DOI: https://doi.org/10.3390/buildings13092346

Russell, S. J., & Norvig, P. (2003). Artificial intelligence: A modern approach (2nd ed.). Prentice Hall.

Sarker, I. H. (2021). Deep learning: a comprehensive overview on techniques, taxonomy, applications and research directions. SN Computer Science, 2, 420. https://doi.org/10.1007/s42979-021-00815-1 DOI: https://doi.org/10.1007/s42979-021-00815-1

Shaveta (2023). A review on machine learning. International Journal of Science and Research Archive, 09(01), 281–285. DOI: https://doi.org/10.30574/ijsra.2023.9.1.0410 DOI: https://doi.org/10.30574/ijsra.2023.9.1.0410

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556

Socher, R., Chiung-Yu, C. L., Ng, A. Y., & Manning, C. D. (2011). Parsing natural scenes and natural language with recursive neural networks. Appearing in Proceedings of the 28 th International Conference on Machine Learning, Bellevue, WA, USA.

Thapaliya, S., & Bokani, A. (2024). Leveraging artificial intelligence for enhanced cybersecurity: Insights and innovations. Sadgamaya, 1(1), 46-53. DOI: https://doi.org/10.3126/sadgamaya.v1i1.66888

Thuraka, B., Pasupuleti, V., Malisetty, S. & Ogirri, K. O. (2024). Leveraging artificial intelligence and strategic management for success in inter/national projects in US and beyond. Journal of Engineering Research and Reports 26 (8), 49-59. https://doi.org/10.9734/jerr/2024/v26i81228. DOI: https://doi.org/10.9734/jerr/2024/v26i81228

Tushar, H. (2017). The role of ethical leadership in developing sustainable organization. Australasian Journal of Law, Ethics and Governance (AJLEG), 3 (2), 83-95.

Vaid, A., Sawant, A., Suarez-Farinas, M., Lee, J., Kaul, S., Kovatch, P., ... & Nadkarni, G. N. (2023). Implications of the use of artificial intelligence predictive models in health care settings: A simulation study. Annals of Internal Medicine, 176(10), 1358-1369. DOI: https://doi.org/10.7326/M23-0949

Wang, P. (2012). Theories of artificial intelligence – Meta-theoretical considerations. Atlantis Press Review, 9.75in x 6.5in. DOI: 10.2991/978-94-91216-62-6_16 DOI: https://doi.org/10.2991/978-94-91216-62-6_16

Wang, P. (2019). On defining artificial intelligence. Journal of Artificial General Intelligence, 10(2), 1-37. DOI: https://doi.org/10.2478/jagi-2019-0002

Wusu, G. E., Alaka, H., Yusuf, W., Mporas, I., Toriola-Coker, L., & Oseghale, R. (2022). A machine learning approach for predicting critical factors determining adoption of offsite construction in Nigeria. Smart and Sustainable Built Environment (ahead-of-print). DOI: https://doi.org/10.1108/SASBE-06-2022-0113

Yan, C., Lang, C., Wang, T., Du, X., & Zhang, C. (2014). Age estimation based on convolutional neural network. Springer International, 211–220. DOI: https://doi.org/10.1007/978-3-319-13168-9_22

Zhu, Z., Hu, Y., Liu, D., Deng, X., & Li, J. (2018). Human face age recognition based on convolutional neural networks. Advances in Computer Science Research, 80, 170-173. DOI: https://doi.org/10.2991/csece-18.2018.36

Downloads

Published

15-02-2026

Issue

Section

Research Articles

How to Cite

[1]
Jacob A. Ogar, M. M. Liman, and C. A. Barka, “Convolutional Neural Network and Human Age Detection : A Pilot Study”, Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, vol. 12, no. 1, pp. 286–303, Feb. 2026, doi: 10.32628/CSEIT2612134.