
CSEIT11724107 | Received : 10 August 2017 | Accepted : 26 August 2017 | July-August-2017 [(2)4: 768-775]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2017 IJSRCSEIT | Volume 2 | Issue 4 | ISSN : 2456-3307

757

An Analysis of Object Oriented Complexity Metrics
K. Maheswaran, A. Aloysius

Department of Computer Science, St. Joseph‟s College (Autonomous), Tiruchirappalli, Tamil Nadu, India

ABSTRACT

Software metrics are essential to measure the quality of software products. Number of metrics related to software

complexity, quality, reusability, reliability, maintainability has been developed in the past and are still being

proposed. Software metrics are tools to control the complexity of software. This paper briefly discusses cognitive

and non- cognitive complexity metrics in Object Oriented (OO) design with respect to the complexity of a class,

code, inheritance, interface and polymorphism.

Keywords: Software Metrics, Software Complexity, Cognitive Informatics, Cognitive Complexity

I. INTRODUCTION

Software Metrics are used to measure the quality of

software products (design, source code etc.), processes

(analyses, design, coding, testing etc.) and

professionals (efficiency or productivity of an

individual designer). Software metrics allow us to

quantitatively define the degree of success or failure of

a product, process, or person. It also useful for

managerial and technical decisions related to cost,

effort, time, complexity, quality etc. Thus,

incorporating metrics into software development

process is a valuable step towards creating better

systems. The software complexity metric is an essential

and critical part of the software system. The software

complexity metrics focuses on the quality of source

codes. There are several software metrics proposed for

capturing the complexity, effort, quality, reliability,

maintainability of object oriented design. These metrics

provide ways to evaluate the software and their use in

earlier phases of software development life cycle. If

one can quantify the design and thereby increase the

quality of the design, the lower probability of the

software error.

Object Oriented Design (OOD) is an interesting area

for current researchers. Many researchers have worked

in recent years Software engineers used software

metrics to measure and predict software systems. To

produce high quality Object Oriented (OO)

applications, a strong emphasis on design aspects is

highly necessary. The popularity of the OO software

development is due to its powerful features like

inheritance, message passing, polymorphism, dynamic

binding, encapsulation and objects composition.

Further, it is characterized by classes and objects,

which are defined in terms of attributes (data) and

operations (methods). These elements are defined in

class declarations. Among these, the method plays an

important role since it operates on data in response to a

message. Several authors like Fenton‟s [1], Shepperd‟s

[2] and others were proposed different software

complexity metrics. Cognitive Informatics [13] acts an

important role in understanding the fundamental

characteristics of the software. Number software

complexity measures [13, 23] have been proposed in

last few decades by the researchers based on cognitive

informatics. Cognitive Complexity Metrics that are

used in the procedural programming to identify the

complexity of the program, and a few of them are

modified in order to satisfy the Object-Oriented

programming.

Cognitive complexity measures the human effort

needed to perform a task or difficulty to understand the

software. This paper also discusses the some of the

existing cognitive metrics in the field of OO Software

Development. The aim of this analysis is to list out few

existing Metrics and to make the reader aware of their

existence and to offer references for further reading.

The entire paper has been organized into five major

sections. In the following section, the basic definitions

Volume 2 | Issue 4 | July-August -2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 769

are introduced. The various OO software metrics and

their variations are analysed in section III. The

comparative analyses of various metrics and

observations for possible enhancement were presented

in section IV. Finally, we make the conclusion in

section V.

II. BASIC DEFINITIONS

A. Class

A class is nothing but a blueprint or a template for

creating different objects which defines its

properties and behaviours

B. Object

An object is an instance of a class. Each object of a

class contains a set of data and code to manipulate

the data.

C. Inheritance

According to IBM, Inheritance is a mechanism of

reusing and extending existing classes without

modifying them, thus producing hierarchical

relationships between them.

D. Interface

An interface is a blueprint of a class. It has static

constants and abstract methods only.

E. Cohesion

Cohesion refers to the degree to which the elements

of a module belong together.

F. Coupling

Coupling is the degree to which one class is

connected with another class.

G. Polymorphism

Polymorphism means ability to take more than one

form. An operation may exhibit different

behaviours in different contexts.

H. Cognitive Complexity

The cognitive complexity means the mental burden

on the user who deals with the code. It can be

calculated in terms of time taken to understand the

code.

III. OBJECT ORIENTED METRICS

Number of software complexity metrics are developed

to assure the quality of the software such as

maintainability, reliability etc., were proposed the past

and present. Several traditional metrics were designed

for structured systems. Among them McCabe‟s

Cyclomatic complexity metric, Halstead‟s complexity

metric and Kafura‟s and Henry‟s fan-in, fan-out are

most commonly used metrics [3, 4, 5]. For object-

oriented systems Chidamber and Kemerer metric suite

forms the foundations. In this section, various Object-

Oriented software metrics were discussed one by one.

A. Class Level Metrics

Chidamber et al., [6] listed six metrics for OO design.

Out of that first and foremost metric is Weighted

Method per Class (WMC) which is represented in eq.

(1). It only considers the method complexity rather than

other parameters of the class. Let c1….cn be the

complexity of the methods.

 WMC = ∑

 (1)

Balasubramanian [3] suggested the improved version

of CK metrics as Class Complexity (CC). This metric

considers instance variables apart from the methods of

a class. It does not have the OO features.

 CC = iv + wm (2)

In eq. (2), iv denotes number of instance variables in a

class and wm denotes sum of weighted method

complexity in a class.

Misra et al., presented Class Complexity Metric by

using method complexity and complexity due to

inheritance which covers cognitive complexity [8].

There are m-levels of depth in the OO code and level j

has n classes then the class complexity (CC) of the

system is calculated in eq. (3)

 CC =
 (3)

 (3.1)

Where Wc is the weight of the particular class. It is

calculated as the sum of cognitive weights of its q

linear blocks composed in individual Basic Control

http://www.ijsrcseit.com/
http://www.ugc.ac.in/journallist/ugc_admin_journal_report.aspx?eid=NjQ3MTg=
https://en.wikipedia.org/wiki/Module_(programming)

Volume 2 | Issue 4 | July-August -2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 770

Structures (BCS‟s). Each block consists of „m‟ layers

of nested Bas BCS‟s and each layer has „n‟ linear BCS.

There are some disadvantages of the CC. A well-

defined metric not only considers the number of

methods, classes, subclasses and relation. It also

considers the internal structure of the method.

Sanjay Misra [9] modified the Class Complexity metric

and proposed a new metric called Weighted Class

Complexity (WCC) in eq. (4). The complexity of a

method is calculated by complexity of the code of

operation in the method and as well as on the number

of attributes in the method.

 (4)

Where Na stands for the total number of attributes and

MC is the method complexity. The main drawback of

the WCC is not considering the object-oriented features

of a class.

Arockiam et al. [10] extended WCC as Extended

Weighted Class Complexity (EWCC) which contains

one of the OO feature namely the cognitive complexity

due to Inheritance is calculated in eq. (5) as follows:

 (5)

Where Na is the total number of attributes, MC is the

method complexity, ICC is the inherited class

complexity.

 (5.1)

Where s is the number of inherited methods, RNa is the

total number of Reused attributes, RMC is the Reused

Method Complexity.

CL is the cognitive complexity of L
th
 level which will

differ from person to person. The value of CL is

assumed to be 1. The limitation of EWCC is cognitive

load for L
th
 level inheritance which is not clearly

defined. It needs to be well defined and more specific

for the inheritance level.

Aloysius altered EWCC as AWCC (Attribute Weighted

Class Complexity) [11]. In EWCC, every attribute has

the same cognitive weight (value) but in general,

cognitive load in understanding the different types of

attributes cannot be the same. Hence, a new metric

namely AWCC was proposed in eq. (6). In AWCC, the

cognitive weights were assigned for the attributes based

on the effort needed to understand the different data

types. Table 1 shows the weights of different attributes

based on cognitive aspects described by Wang [23].

 (6)

 AC = (PDT *Wb) + (DDT *Wd) + (UDDT *Wu) (6.1)

Where PDT is the number of Primary Data Type

attributes, DDT is the number of Derived Data Type

attributes, UDDT is the number of User Defined Data

Type attributes.

TABLE I

COGNITIVE WEIGHTS OF DIFFERENT TYPES OF ATTRIBUTES

Category Weights

Sub-Conscious Cognitive Attribute (PDT) 1

Meta Cognitive Attribute (DDT) 2

Higher Cognitive Attribute (UDDT) 3

AWCC only focuses the data type (attribute)

complexities. It does not consider other parameters of a

class.

Sandip Mal et al. suggested a new complexity metric

for Object-Oriented (OO) design to measure the

complexity of a software system [12]. Complexity

Metric (CM) of a class is defined in the following eq.

(7).

CM= NOM + INST + EXT + NSUP + TCC + NSUB (7)

Where NOM = No. of methods in a class, INST = No.

of instance variables in a class, EXT = No. of external

variable in a class, NSUP = No. of super class of a

class, TCC = Total Cyclomatic Complexity of a Class,

NSUB = Number of subclass of a class.

Higher value of CM indicates more mental exercise is

required to design and code the class and vice versa.

This metric is used for predicting the possibility of

reuse a class in a large system, how much easy to

understand and how much complex the design and

more empirical validation is needed.

Vinay et al. proposed a new class complexity metric

CCC (Complete Class Complexity metric). It focuses

each dimension of a class (Nine different parameters)

to measure the complexity which is represented in eq.

(8) [27].

http://www.ijsrcseit.com/
http://www.ugc.ac.in/journallist/ugc_admin_journal_report.aspx?eid=NjQ3MTg=

Volume 2 | Issue 4 | July-August -2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 771

CCC = NOMT + AVCC + MOA + EXT + NSUP+

 NSUB + INTR + PACK + NQU (8)

Where NOMT - Number of Methods, AVCC -

Average Cyclomatic Complexity, MOA - Measure of

aggregation

EXT - External Method calls, NSUP - Number of

Super Class, NSUB - Number of Sub Class, INTR -

Interface Implemented, PACK - Package Imported,

NQU - Number of Queries.

The CCC metric involves all the possible attribute of

the class and is predictor of how much time and effort

is required to design and maintain the class. The value

of the CCC metric is directly linked with the testability

and understandability of the class. The increased the

value of CCC metric shows that more the effort needed

to maintain the class.

Kumar Rajnish suggested a new Class Complexity

Metric (CCM) of an Object-Oriented (OO) program.

To calculate CCM, Total Cyclomatic Complexity (TCC)

of a class, Number of Methods (NOMT) of a class,

Number of Instance Variables (INST) declared,

Number of External Methods (EXT) called, Number of

Local Methods (LMC) called, and Total Lines of Code

(NLOC) have been taken [28]. The formula for CCM is

written in eq. (9).

CCM = k +w1 * TCC + w2 * NOMT + w3 * INST+ w4 *

EXT + w5 * LMC + w6 * NLOC (9)

Where w1, w2, w3, w4, w5, w6 were the weights and the

constant k are derived at least square regression

analysis. CCM is used to predict the understandability

of classes. It does not concentrate performance

indicators such as maintenance effort and System

performance.

Kumar Rajnish presented [26] a new complexity metric

for OO design measurement to calculate the design

stage whether the classes become more complex,

Moderate complex or less complex. A metric named

Attribute Method Complexity (AMC) is used to

measure the complexity of class in the design stage

itself. AMC may be defined as follows:

AMC = A’ + M’ (10)

In eq. (10), A‟ and M‟ represents the attributes and

method range values based on the sum of the actual

attributes and methods (private, public and protected)

of a class. In large applications, AMC is used to predict

how much effort would be required to reuse a system,

how much easy to understand and how much complex

the design. AMC measures reusability,

understandability and complex design. The higher

number of classes denotes the lower reusability. Higher

design complex harder to understand.

B. CODE/PROGRAM LEVEL COMPLEXITY

METRIC

Wang et al., [13] proposed complexity measure of a

software program named as Cognitive Functional Size

(CFS) in eq. (11). The functional size of software

depends on three parameters input, output and internal

control flow. The internal control flow of a program

derived from Basic Control Structures.

 CFS = (Ni + No) * Wc (11)

Where Ni is the number of inputs to the program and

No is the number of output from the program and WC is

the entire cognitive weight of all BCSs.

 (11.1)

Kushwaha [14] defines Cognitive Information

Cognitive Measure (CICM) is the function of operators

and operands.

 CICM = WICS * Wc (12)

In eq. (12), Wc is the weight of the BCS and WICS

stands for Weighted Information Count of Software

which is defined in eq. (12.1)

 ∑

WICL means weighted Information Count of k
th
 LOC.

 WICLk = ICSk / [LOCs – k] (12.2)

 ICS stands for Information Contained in Software.

 ∑

 (12.3)

Misra developed [15] a new metric named as Cognitive

Program Complexity Measure (CPCM) is expressed

that the total number of occurrences of input and output

is strongly effect of the cognitive complexity of

software. The CPCM is defined in eq. (13).

 CPCM = SIO + Wc (13)

 SIO = Ni + No (13.1)

http://www.ijsrcseit.com/
http://www.ugc.ac.in/journallist/ugc_admin_journal_report.aspx?eid=NjQ3MTg=

Volume 2 | Issue 4 | July-August -2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 772

Where Ni is total occurrence of input variables and No

is total occurrence of output variables.

Amit Kumar [16] proposed a metric to count the

number of variables and constants line by line and

multiplies it with its BCS‟s weight. This technique is

used to measure the cognitive complexity of a program.

In this measure operators are not considered. The New

Cognitive Complexity of Program (NCCoP) is

calculated in following eq. (14).

(14)

C. INHERITANCE AND POLYMORPHISM BASED

METRICS

Inheritance and Polymorphism are the important

concept of OO programming paradigm. The following

identifies some the existing metrics for the same.

Sanjay Misra [17] suggested that an inheritance

complexity metric for object-oriented code using

cognitive approach. In this measure first calculate

Method Complexity. Second stage contains calculation

of class complexity. The third important stage is to find

Cognitive Code Complexity (CCC) calculated eq. (15)

 ∏ [∑

]

If more than one class hierarchies, then we simply add

CCCs of each hierarchy to calculate the complexity of

the whole OO system. The Class Complexity Unit

(CCU) of a class is defined as the cognitive weight of

the simplest software component.

Deepti Misra [18] proposed two complexity metrics for

inheritance, one at class level CCI expanded as Class

Complexity due to Inheritance is represented in eq. (16)

and another metric for program level ACI stands for

Average Complexity of a program due to Inheritance is

defined in eq. (16.2).

 ∑

 ∑

 (16)

Where P denotes the number of predicates in a method

and D is the maximum depth of control structures in a

method

Method Complexity (MC) = P + D + 1 (16.1)

Where CCIifrom is the complexity of an ith class is due

to inheritance, „k‟ is the number of classes, ith class is

inheriting, CCIifrom is the complexity of a parent class,

i
th
 class is inheriting, „l‟ is the number of methods in i

th

class, MCj is the complexity of j
th
 method in i

th
 class is

calculated using eq. (16.1) . ACI defined as follows:

∑

 (16.2)

Ankita et al., proposed a measure for design

complexity of different types of inheritance after

analysing various Cohesion metrics. Based on the

results the author suggested that hierarchical

inheritance should be avoided and suggested to use

Interfaces for better design [19].

Sheldon et al., proposed [24] two metrics Average

Degree of Understandability (AU) and Average Degree

of Modifiability (AM). AU is defined as in eq. (17).

AU of a class

inheritance = ∑
 (17)

 U of class C = PRED (Ci) + 1 (17.1)

Where Ci is i
th
 class, PRED (Ci) is the total numbers of

predecessors of class i, „t‟ is the total number of classes

in the class inheritance tree, and SUCC (Ci) stands for

successors of class i. Average Degree of Modifiability

(AM) is defined as follows:

 (17.2)

Rajnish et al., proposed three different metrics for class

inheritance hierarchies [20]. Derive Base Ratio Metric

(DBRM), Average Number of Direct Child (ANDC)

Metric and Average Number of Indirect Child (ANIC)

Metric for measure the complexity in design stage itself.

DBRM is the ratio of the total number of derived

classes (TD) to the total number of base classes (TB) in

the class inheritance tree. DBRM is calculated in eq.

(18).

 (18)

ANDC metric is the ratio of the total number of

immediate child (TDC) to the total number of classes

(N) in the inheritance tree which is calculated as

follows:

 (18.1)

http://www.ijsrcseit.com/
http://www.ugc.ac.in/journallist/ugc_admin_journal_report.aspx?eid=NjQ3MTg=

Volume 2 | Issue 4 | July-August -2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 773

ANIC metric is the ratio of the total number of indirect

child TIC) to the total number of classes (N) in the

inheritance tree. ANIC metric is as follows:

 (18.2)

Abreu et al. proposed Metrics [22, 25] for Object

Oriented Design (MOOD). It refers set of metrics for

the object-oriented paradigm. The two metrics Method

Hiding Factor (MHF) and Attribute Hiding Factor

(AHF) were used together to measure the feature

encapsulation. AHF and MHF correspond to the

average amount of hiding between all classes in the

system. Method Inheritance Factor (MIF) and

Attribute Inheritance Factor (AIF) are used to measure

complexity of an inheritance. The other MOOD metrics

are Coupling Factor (COF), Polymorphism Factor

(POF), Clustering Factor and Reuse Factor. The two

main features used in MOOD metrics are methods and

attributes. Methods are used to perform operations of

several kinds such as obtaining or modifying the

status of objects.

Francis proposed a new cognitive complexity metric

called Cognitive Weighted Polymorphism Factor

(CWPF) to identify the complexity of polymorphism

on the basis of its types namely pure, static and

dynamic polymorphism. It calculates not only the

architectural complexity of the polymorphism, but also

the cognitive complexity arising from the effort needed

to comprehend different types of polymorphism in the

Object-Oriented software system [21].

(19)

(19.1)

In eq. (19), Mn (Ci) represents number of overriding

methods in class Ci, DC (Ci) means number of children

for class Ci, TC stands for Total number of Classes. NPP

abbreviate number of pure polymorphism, NSP stands

for number of static polymorphism, NDP = number of

dynamic polymorphism, CW means cognitive weight.

ACW is defined in eq. (19.2)

ACW = (CWPP + CWSP +CWDP) / 3 (19.2)

CWPF is more comprehensive in nature and the

metrics were verified by case study by conducting a set

of comprehension test. It is concluded that the CWPF is

a better indicator for calculating class complexity than

the existing PF metric.

Francis [21] introduced a new complexity metric called

Cognitive Weighted Attribute Hiding Factor for finding

class complexity due to encapsulation is calculated in

eq. (20).

CWAHF was defined mathematically and it is a

indicator of class complexity, due to the encapsulation

and attributes scopes, than the AHF proposed by Abreu

[22].

IV. COMPARATIVE ANALYSIS

This paper addresses the various metrics both cognitive

and non-cognitive approach with respect to class, code,

inheritance, polymorphism and encapsulation. The

comparative analysis of these metrics is shown in Table

II.

Some of the observations from the existing metrics are

listed below for further enhancement.

i. The inheritance complexity metric with all

existing limitations can be improved for a

better calculation of class complexity based on

cognitive phenomenon.

ii. Method complexity (MC) plays a vital role for

computing the class complexity. Therefore, the

redefined MC by incorporating the different

parameters of methods including cognitive

approach could be developed.

http://www.ijsrcseit.com/
http://www.ugc.ac.in/journallist/ugc_admin_journal_report.aspx?eid=NjQ3MTg=

Volume 2 | Issue 4 | July-August -2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 774

iii. The cognitive class complexity metric by

including the different access specifiers of the

class attributes and methods could be proposed.

iv. A cognitive complexity metrics for advanced

object oriented concepts like interface,

packages, etc., can be designed.

v. An unified or integrated metric with the help of

existing metrics by incorporating all the major

features of OOPs including cognitive aspects

need to be developed.

Table II. Comparison of various OO Metrics

V. CONCLUSION

Software metrics are used by the project manager,

developer, and tester in order to ensure the quality of

the software products. The primary objective of this

paper is to investigate the various object oriented

metrics both cognitive and non-cognitive approach.

The class level, program or code level, polymorphism,

encapsulation and inheritance aspects of complexity

metrics are analysed and tabulated. From the existing

literature, some of the observations and future

directions are also discussed.

VI. REFERENCES

[1]. N. Fenton and S.L. Pfleeger, “Software Metrics:

A Rigorous & Practical Approach”, Third edition,

International Thomson Computer Press, 2014.

[2]. M. J. Shepperd and D. Ince, “Derivation and

Validation of Software Metrics”, Oxford

University Press, 1993.

[3]. Halstead, Elements of Software Science, New

York: Elsevier North, 1977.

[4]. Kafura D and Henry S, Software Quality

Metrics Based on Interconnectivity, Journal of

Systems and Software, Vol. 2, No. 2, pp 121-

131, 1981,

[5]. McCabe, A Complexity Measure, IEEE Trans.

on Software Engg., Vol. 2, No. 4, pp.308-320,

1976.

[6]. S.R. Chidamber and C.F. Kemerer, A metrics

suite for object oriented design, IEEE

Transactions on Software Engineering, pp. 476-

493, Vol. 20, No.6, 1994.

[7]. N.V. Bala Subramanian, “Object-Oriented

Metrics”, Asian Pacific Software Engineering

Conference (APSEC-96), IEEE Xplore, pp. 30-

34, 1996.

[8]. Sanjay Misra and Ibrahim Akman, “A New

Complexity Metric Based on Cognitive

Informatics”, Proceedings of 3
rd

 International

Conference on Rough Sets and Knowledge

Technology, pp.620–627, 2008.

[9]. Sanjay Misra and k. Ibrahim Akman, “Weighted

Class Complexity: A Measure of Complexity for

Object Oriented System,” Journal of Information

Science and Engineering, pp. 1689-1708, 2008.

[10]. L. Arockiam, A. Aloysius, J. Charles selvaraj,

“Extended Weighted Class Complexity: A new

measure of software complexity for objected

Measure

 Metric

C
la

ss

C
o

m
p

le
x

it
y

C
o
d

e

C
o

m
p

le
x

it
y

In
h
er

it
an

ce

P
o

ly
m

o
rp

h
is

m
/

E
n

ca
p

su
la

ti
o

n

C
o
g
n

it
iv

e

WMC - - - -

CC

(Bala)
 - - - -

CC

 (Misra)
 - - -

WCC - - -

EWCC - -

AWCC - -

CM - - - -

CCC

(Vinay)
 - - - -

CCM - - - -

AMC - - - -

CFS - - -

CICM - - -

CPCM - - -

NCCoP - - -

CCC

(Misra)
- - -

CCI - - -

AM - - -

MHF & AHF - - - -

MIF & AIF - - - -

COF & POF - - - -

DBRM ,

ANDC

ANIC

- - - -

CWPF - - -

CWAHF - - -

http://www.ijsrcseit.com/
http://www.ugc.ac.in/journallist/ugc_admin_journal_report.aspx?eid=NjQ3MTg=

Volume 2 | Issue 4 | July-August -2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 775

oriented systems”, Proceedings of International

Conference on Semantic E-business and

Enterprise computing (SEEC), pp. 77-80, 2009.

[11]. L. Arockiam, A. Aloysius, “Attribute Weighted

Class Complexity: A New Metric For Measuring

Cognitive Complexity Of OO Systems",

Proceedings of International Conference on

Computational Intelligence and Cognitive

Informatics, 2011.

[12]. Sandip Mal and Kumar Rajnish, "Measuring

System Complexity Using New Complexity

Metric", Software Engineering: An International

Journal, Vol. 3, No. 2, pp.35-43, 2013.

[13]. Y. Wang and J. Shao, “Measurement of the

Cognitive Functional Complexity of Software”,

The 2
nd

 IEEE International Conference on

Cognitive Informatics, IEEE CS Press, pp. 67-74,

2003.

[14]. D. S. Kushwaha and A. K Misra, "Robustness

Analysis of Cognitive Information Complexity

Measure using Weyuker Properties", ACM

SIGSOFT SEN, Vol. 31, No. 1, 2006.

[15]. Sanjay Misra, “Cognitive Program Complexity

Measure”, Proceedings of 6
th
 IEEE

International Conference on Cognitive

Informatics, 2007.

[16]. Amit Kumar, "A New Cognitive Approach to

Measure the Complexity of Software‟s",

International Journal of Software Engineering

and Its Applications Vol.8, No.7, pp.185-198,

2014.

[17]. Sanjay Misra, “An inheritance complexity metric

for object-oriented code: A cognitive approach”,

Indian Academy of Sciences, Vol. 36, No. 3, pp.

317–337, 2011.

[18]. Deepti Mishra, "New Inheritance Complexity

Metrics for Object-Oriented Software Systems:

An Evaluation with Weyuker‟s Properties",

Computing and Informatics, Vol. 30, No.2, pp.

267–293, 2011.

[19]. Ankita Mann, Sandeep Dalal and Neetu Dabas,

"Measurement of Design Complexity of

Different types of Inheritance using Cohesion

Metrics", International Journal of Computer

Applications, Vol. 77, No.3, 2013.

[20]. Kumar Rajnish, Arbind Kumar Choudhary,

Anand Mohan Agrawal, "Inheritance Metrics for

Object-Oriented Design", International Journal of

Computer Science & Information Technology

(IJCSIT), Vol. 2, No. 6, pp. 13-26, 2010.

[21]. Francis Thamburaj, Aloysius A, "Cognitive

Weighted Polymorphism Factor: A

Comprehension Augmented Complexity Metric",

International Journal of Computer, Electrical,

Automation, Control and Information

Engineering Vol. 9, No. 11, pp.2307-2312, 2015.

[22]. F. B. Abreu, and R. Carapuça., “Object-oriented

software engineering: Measuring and controlling

the development process,” Proceedings of the 4
th

international conference on software quality, pp.

1-8, 1994.

[23]. Wang. Y, “A new measure of software

complexity based on cognitive

weights”, Canadian Journal of Electrical and

Computer Engineering, Vol. 28, No. 2, pp. 1-6,

2003.

[24]. Sheldon T. F, Jerath. K and Chung. H," Metrics

for maintainability of class inheritance

hierarchies", Journal of software maintenance

and evolution: Research and practice, Vol. 14,

No. 3, pp. 147-160, 2002.

[25]. Abreu, Fernando B, “Design metrics for OO

software system”, ECOOP‟95, Quantitative

Methods Workshop, 1995.

[26]. Kumar Rajnish, “Another New Complexity

Metric for Object-Oriented Design

Measurement”, International Journal of Hybrid

Information Technology, Vol.7, No.2, pp.203-

216, 2014.

[27]. Vinay Singh, Vandana Bhattacherjee, “A New

Complete Class Complexity Metric”,

International Journal of Soft Computing And

Software Engineering (JSCSE), Vol. 3, No. 9,

pp.1-9, 2013.

[28]. Kumar Rajnish, "Class Complexity Metric to

Predict Understandability", International Journal

of Information Engineering and Electronic

Business, Vol. 6, No. 1, pp. 69-76, 2014.

http://www.ijsrcseit.com/
http://www.ugc.ac.in/journallist/ugc_admin_journal_report.aspx?eid=NjQ3MTg=
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=9754
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=9754

