
CSEIT11726311 | Received : 11 Dec 2017 | Accepted : 31 Dec 2017 | November-December-2017 [(2)6: 1239-1243]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2017 IJSRCSEIT | Volume 2 | Issue 6 | ISSN : 2456-3307

1239

Look Back Sort : A Backward Comparison Algorithm for Internal

Sorting
Jyoti Lakhani1, Kirti Shrimali2, Dharmesh Harwani3*

1,2Department of Computer Science, Maharaja Ganga Singh University, Bikaner, Rajasthan, India
3
Department of Microbiology, Maharaja Ganga Singh University, Bikaner, Rajasthan, India

ABSTRACT

Present communication is an attempt to develop a novel algorithm “Look-Back Sort” (LB Sort) for internal sorting.

The objective of the present research work was to reduce the space and time complexities of the sorting process in

the worst cases. The performance of all internal sorting algorithms in worst cases are bound to O(n log n). To

address the issue, the proposed algorithm is implemented first followed by its benchmarking with some other

internal sorting algorithms. The empirical analysis of algorithms using C++ function is performed on the numeric

samples vary in size. It was observed that the runtime of the LB-sort algorithm is highly comparable with the Quick

sort algorithm in the worst case analysis. The overall time complexity of the proposed algorithm is observed to be

O(n log k) when k<<n where n is denoting the current index. The correlation and covariance analyses also revealed

that the proposed algorithm improves the performance of sorting process in the worst case highly significantly

without compromising its simplest execution. Moreover, the completion of the sorting process in a single run is its

additional advantage.

Keywords : Internal Sorting, Backward Comparison, Benchmarking, Empirical Study, Space Complexity, Time

Complexity

I. INTRODUCTION

Sorting is the process to arrange given items in a

numerical or lexicographical order [1], [4]. There are

mainly two types of sorting algorithms known as

internal and external sorting algorithms. Internal

sorting algorithms work on the small size data that held

in primary memory. On the other hand, if data is large

as compared to the primary memory then the internal

sorting algorithm does not work. In these cases external

sorting algorithms are used where data is kept in the

external disk during the sorting process. The present

study highlights an improved version of sorting

algorithm to execute internal sorting. There are several

other simple internal sorting algorithms detailed out in

the literature such as Insertion sort, Selection sort,

Bubble sort, Quick sort, Merge sort etc.

[2],[8],[9],[10],[11],[12],[13],[14],[15]. These sorting

algorithms function as the platform for other

complicated sorting algorithms. The efficiency of an

algorithm can be estimated by comparing its execution

time. The number of comparisons performed by a

sorting algorithm is directly proportional to the

complexity [5] and execution time. Therefore the

number of comparisons can also be considered as

another criterion to address complexity of a sorting

process. It is important to mention here that the

programming languages used for implementation of the

sorting algorithms do not have any impact on the

complexity of algorithm [3]. The proposed algorithm

tracks the previously sorted data held in an array. The

performance of the algorithm has been investigated

using asymptotic complexity analysis and the time

complexity has been evaluated using empirical study.

Internal Algorithms

None of the internal sorting algorithm can perform

faster than O(n log n) in an average and worst case [4].

Volume 2, Issue 6, November-December-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 1240

The reason behind this is that all of these algorithms

are in-place or comparison sorts [1]. The Selection sort

Figure 1. The process of sorting using the proposed LB-sort

algorithm

is suitable for short length arrays with O(n
2
) complexity.

The algorithm matches nearest items to perform in-

place comparisons. It is preferred over the other

complex algorithms for its simplicity which is its main

advantage [6]. Insertion sort is another sorting

algorithm which is the most suitable for small length

arrays. It efficiently works for average cases. Whereas,

the internal sort algorithm is used as a basic supporting

algorithm for many other complex sorting algorithms.

The main idea behind implementing the insert sort

algorithm is to pick items one by one and insert them at

the appropriate place in an array. The Insertion sort

algorithm is an expensive algorithm in terms of space

and time issues as it shifts elements in the array several

times. The worst case running time of Insertion sort

algorithm is O(n log n). The main feature of the

Insertion sort algorithm is that it does not require

random access in an array. The Bubble sort algorithm

can function very efficiently on short length ordered

arrays. It compares two adjacent elements and swaps

them if required. Bubble sort requires O(n
2
) time to sort

an array. Therefore the algorithm is not suitable for the

large and unsorted data sets. The Quick sort algorithm

is the fastest in all algorithms due to its divide and

conquers nature [7]. It partitions an array and finds its

pivot. The pivot is assumed to take already sorted place

and located centrally. Once the pivot is found, all the

other elements in the array are compared with it. The

array elements smaller than the pivot is moved to the

left and those which are large enough are moved to the

right. These lesser and greater sub lists are then

recursively sorted by using the same process which

yields average runtime complexity of O(n log n). The

Quick sort is complex but considered as the fastest

sorting algorithm amongst other internal sorts.

II. METHODS AND MATERIAL

The proposed LB-sort algorithm is based on the

backward comparison method. Algorithm targets items

held in an array. Let n be the size of an array, i is the

current index and the order is ascending. The algorithm

starts with scanning items of the array from index i=0

and continue with length until it reaches at index n-2.

The algorithm compares i
th
 item with i+1

th
 item. In case

of inappropriate order, the algorithm swaps the i
th
 and

i+1
th
 item and scan the array backwardly from i

th
 index

to 0
th
 index. The swap occurs, if an incompatibility is

found in the sorted order at any position otherwise

algorithm continues further. The process is shown in

figure 1.

Algorithm: LB-sort (array)

Input: an array with size n

Output: sorted array

Steps:

 1. For each index i from 0 to n-2

 2. Compare i and its next item at i+1 position

 3. If require swap i
th

and i+1
th
 item

 4. For each index k=i to k>0

 5. Compare k
th
 and k-1

th
 item

 6. If require swap k
th
 and k-1

th
 item

 7. End

III. RESULTS AND DISCUSSION

The proposed algorithm has been implemented in C++

programming language on the windows 64bit platform

(a)

(b)

5 8 9 7 6

5 8 7 9

i+1

6

 i

K K-1

5 7 8 9 6

 i

i+1 i

5 8 9 7

i+1

6

 i

5 8 9 7 6

 i

(c)

(d)

k k-1

 i

 i

+1
5 7 6 8 9

 i

i

9 7 6 5 8

k k-1

8 7 6 9 5

 i

9 5 6 7 8

k k-

1

9 6 5 7 8

k k-1

 i

k k-1

5 7 6 8 9

k k-

1

i

5 6 7 8 9

k k-1

5 8 7 6 9

 i

 i

5 8 7 9 6

 i i+1

+1

Volume 2, Issue 6, November-December-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 1241

with dual core 2.10GHz processor. To perform

empirical analysis, we have implemented four other

internal sort algorithms on the same machine. The four

implemented internal sorting algorithms are Insertion

sort, Selection sort, Bubble sort and Quick sort. Data

samples of size from 10 to 10000 were inserted in an

array and then all four above mentioned as well as LB-

sort sorting algorithms were run. Running time and

number of comparisons were used as the criteria for

empirical analysis. Results, as shown in figure 2,

clearly indicates that LB-sort require the minimum

number of comparisons as compared to other

algorithms. It also revealed that the Quick sort

algorithm is the second best algorithm for the

implementation of the same query followed by

Insertion and Bubble sort algorithms. The Insertion and

Bubble sort algorithms require almost the same number

of comparisons for the inputs of short length of size

less than 5000. It is clear from figure 2 that the

Insertion sort algorithm performs better than the

Bubble for the larger size inputs. The Selection sort

algorithm discouraged Insertion and Bubble sort

algorithms in terms of the number of comparisons

made whereas it is least effective than the LB-sort and

Quick sort algorithms.

Asymptotic analysis of the running time of the different

sorting algorithms has been presented in Table 1. It is

evident here that LB-sort algorithm has Ω(n)

complexity for the best case. The same appears also for

Insertion and Bubble sort algorithms. For Quick sort

and Selection sort algorithms Ω(n log n) and Ω(n2)

complexities were observed respectively. For average

case, the complexity of LB-sort was observed to be θ(n

log k)(k<<n) whereas for Insertion, Bubble and

Selection sort θ(n2) complexity were observed. The

complexity of Quick sort algorithm θ(n log n) is an

exception here. It is clear from the above data that LB-

sort performs relatively well in the worst case with the

complexity observed as same as for the average case.

All other four internal sort algorithms have worst case

complexity O(n2) which is at the higher side than the

LB-sort algorithm. Intriguingly, a Quick sort algorithm

requires auxiliary space whereas other internal sort

algorithm including LB-sort does not require any

additional auxiliary space.

Figure2. Benchmarking of various internal sorting

algorithms in terms of number of comparisons

TABLE I

TABLE1. TIME AND SPACE COMPLEXITIES OF INTERNAL SORT

ALGORITHMS

Algorithms

Time complexity Auxiliary

Space

complexi

ty

Best

case

Average

Case

Worst

Case

Insertion Ω(n) θ(n
2
) O(n

2
) O(1)

Selection Ω(n
2
) θ (n

2
) O(n

2
) O(1)

Bubble Ω(n) θ (n
2
) O(n

2
) O(1)

Quick Ω(n log

n)

θ (n log

n)
O(n

2
) O(n)

LB Ω(n) θ (n log

k) k<<n

O(n log k)

k<<n

O(1)

Figure 3(a) Best case analysis of various internal sorting

algorithms

0

500

1000

1500

2000

1 2 3 4 5

N
u

m
b

e
r

o
f C

o
m

p
ar

is
o

n
s

Number of Runs

LB sort insertion selection bubble quick

Volume 2, Issue 6, November-December-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 1242

Figure 3(b) Average case analysis of various internal sorting

algorithms

Figure 3(c).Worst case analysis of various internal sorting

algorithms

The time complexity issue of the algorithms used in the

present investigation has also been tested, results from

which have been furnished in figure 3(a), 3(b) and 3(c).

All the five algorithms have been run with best,

average and worst case datasets. The results clearly

revealed that for the best and average cases, LB-sort

algorithm performs relatively better than the other four

algorithms used. However for the worst case dataset,

the performance of LB and Quick sort algorithms is

comparable.

To find out, if any correlation exists between

experimental algorithms, statistical analysis was

performed. The analysis revealed a positive relation

between of LB-sort algorithm with Insertion sort

(0.0373), Bubble sort (0.0350) and Quick sort (0.0361)

algorithms while a negative correlation with Selection

(-0.070) algorithm was observed. The negative

correlation value clearly indicates that there is no

statistically significant relationship between the LB-

sort algorithms with the Selection sort algorithm. In

addition to that a covariance analysis was also

performed between LB-sort and Insertion sort, Bubble

sort and Quick sort algorithms (Figure 4(a), 4(b), 4(c)

and 4(d)). The results from this analysis further

confirms that the LB sort algorithm is more near to the

Quick sort algorithm (86.98) in performance than the

Insertion (982.8) and Bubble sort (661.36) algorithms.

Figure 4(a) Scatter plot for the correlation analysis between

LB sort and Insertion sort algorithms

Figure 4(b) Scatter plot for the correlation analysis between

LB sort and Selection sort algorithms

Figure 4(c). Scatter plot for the correlation analysis between

LB sort and Bubble sort algorithms

Figure 4(d). Scatter plot for the correlation analysis between

LB sort and Quick sort algorithms

IV. CONCLUSION

The proposed LB-sort algorithm is found to be the best

performer in our study with relation to its least space

and time complexities than the Insertion, Selection,

0

500

1000

1 2 3 4 5

N
um

be
r o

f C
om

pa
ri

so
ns

Number of Runs

LB sort insertion selection bubble quick

0

500

1000

1500

2000

2500

3000

1 2 3 4 5

N
u

m
b

e
r

o
f C

o
m

p
ar

is
o

n
s

Number of Runs

LBsort insertion selection bubble quick

y = 0.642x + 164.9
R² = 0.786

0

50

100

150

200

250

300

350

0 50 100 150 200

N
o

 o
f

c
o

m
p

a
r
is

o
n

s
u

se
d

 b
y

 i
n

se
r
ti

o
n

so
r
t

No of comparisons used by LB sort

Insertion Sort Linear (Insertion Sort)

y = 185
R² = #N/A

0

50

100

150

200

0 50 100 150 200

N
o

 o
f

C
o

m
p

a
r
is

o
n

s
u

se
d

 b
y

S
e
le

c
ti

o
n

 S
o

r
t

No of comparisons used by LB sort

Selection Sort Linear (Selection Sort)

y = 0.432x + 211.8
R² = 0.256

0

50

100

150

200

250

300

350

0 50 100 150 200

N
o

 o
f

co
m

p
ar

is
o

n
s

u
se

d
 b

y
B

u
b

b
le

 s
o

rt

No of comparisons used by LB sort

Bubble Sort Linear (Bubble Sort)

y = 0.056x + 148.0
R² = 0.065

0

50

100

150

200

0 50 100 150 200

N
o

 o
f

c
o

m
p

a
r
is

o
n

s
u

se
d

 b
y

Q
u

ic
k

 s
o

r
t

No of comparisons used by LB sort

Quick Sort Linear (Quick Sort)

Volume 2, Issue 6, November-December-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 1243

Bubble and Quick sort algorithms for the best, average

and worst cases. Although, the LB-sort algorithm is an

in-space comparison algorithm similar to the Selection

sort algorithm yet sorts the entire array in a single run.

The worst case time complexity of the algorithm is O(n

log k) where k<<n. Here, k is the current index. The

statistical tests performed in the present study also

confirmed that the LB-sort algorithm is able to execute

much faster sorting followed by Quick, Insertion,

Bubble and Selection sort algorithms. Moreover, it

does not require any additional space as it is required in

Quick sort algorithm. Moreover, an additional run to

execute sorting is not needed in the LB sort algorithm

as it is needed in the Bubble and Insertion sort

algorithms.

V. REFERENCES

[1]. https://en.wikipedia.org/wiki/Sorting_algorithm

downloaded on December 20, 2017

[2]. T.H. Cormen, C.E. Leiserson, R.L. Rivest. C.

Stein, 2001. “Introduction to Algorithms”, 2nd

edition, MIT press,

[3]. A.M. Aliyu and Dr. P.B. Zirra, 2013. “A

Comparative Analysis of Sorting Algorithms on

Integer and. Character Arrays”, The International

Journal Of Engineering And Science (IJES), vol.

2, no. 7, (2013), pp. 25-30.

[4]. I. Flores. 1960. “Analysis of Internal Computer

Sorting”, ACM, vol. 7, no. 4, (1960), pp. 389-

409.

[5]. C.A.R. Hoare. 1961. Algorithm 64: Quick sort.

Comm. ACM, vol. 4, no. 7 (1961), pp. 321.

[6]. Selection Sort,

http://www.algolist.net/Algorithms/

Sorting/Selection_sort

[7]. E. Horowitz, S. Sahni and S. Rajasekaran, first

edition, 1987. “Computer Algorithms”,Computer

Science Press, New York.

[8]. S. Lipschutz, 1986. “Theory and Problems of

Data Structure”, McGraw Hill Book Company.

[9]. Md. Khairullah, 2013. International Journal of

Advanced Science and Technology Vol. 56, July,

2013.

[10]. Sengupta et al., 2007. “Algorithms in Java”, 3rd

ed., Part 1-4, Addison-Wesley Professional

Publisher, New York.

[11]. J. Hammad, 2015. “A Comparative Study

between Various Sorting Algorithms”,

International Journal of Computer Science and

Network Security, VOL.15 No.3.

[12]. Jr P.W., C.A. Brown. 1985. “The analysis of

algorithms”. Holt, Rinehart & Winston, New

York.

[13]. S. Baase. 1988. “Computer algorithms:

Introduction to analysis and design”, Addison

Wesley, Reading, Massachusetts,1988.

[14]. R. E. Neapolitan, K. Naimipour. 2010.

“Foundations of algorithms”, Jones & Bartlett

Learning.

[15]. U. Manber. 1989. “Introduction to algorithms: A

creative approach”, Addison-Wesley Longman

Publishing Co., Inc.

