
CSEIT1183110 | Received : 16 Feb 2018 | Accepted : 28 Feb 2018 | January-February-2018 [(3) 1 : 1842-1847]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2018 IJSRCSEIT | Volume 3 | Issue 1 | ISSN : 2456-3307

1842

-

An Approach to Mutation Testing with Automated Debugging

Tools for Software Testing
Rajalakshmi S

*1
, Aathira P

1
, Sakthi Kumaresh

2

1Research Scholar, BCA, Department of Computer Science, M.O.P. Vaishnav College for Women, Chennai, Tamil Nadu, India

2Associate Professor, BCA, Department of Computer Science, M.O.P. Vaishnav College for Women, Chennai, Tamil Nadu, India

ABSTRACT

Debugging is an extremely difficult and time consuming task in software testing. Individuals have put in a great

deal of effort in creating automated tools and techniques for supporting different debugging tasks. Most

techniques that are in current practice focus on picking subsets of possibly erroneous statements and

prioritizing them based on some standard. A program faces a failure in certain circumstances. The overall

objective of this study is to examine how software developers/testers utilize and attain benefit from these

automated tools. We also perceive on possible directions for future work in the zone of automated debugging

and try to combine automated debugging techniques (designed based on delta debugging algorithm) and

mutation testing with a specific end goal to lessen the measure of cost and time involved in the Software

Testing phase.

Keywords : Statistical debugging, user studies, testing, delta debugging, debugging aids

I. INTRODUCTION

On occurrence of a software failure, developers

perform three main tasks to eliminate the cause for

the failure. Fault localization is the first task

involving of identifying the statements in the

program responsible for failure [18]. The next is fault

understanding, which involves understanding root

cause for the failure. Finally, fault correction

involves in determining how code can be modified to

remove the root cause. These three tasks are

collectively termed as debugging.

Debugging is always a dreary and tedious experience

that plays a critical part of cost in maintaining

software [1]. Hence, reducing the cost of debugging

through methods that can enhance efficiency and

effectiveness of such tasks is vital. Over the most

recent couple of years, there have been an

exceptional number of research techniques that help

automated debugging activities [2, 3, and 20].

However, there are many difficulties in these

techniques that must be tended before proceeding to

place them in the hands of developers.

In this paper, we give an insight on how mutation

testing can be done with automated debugging tools

to prove and isolate failure causes and speedup

software testing. Basically, this method sets up

subsets of the original circumstances, and tests these

configurations whether the failure still occurs.

Eventually, these methods return a subset of

circumstances where every single circumstance is

pertinent for delivering the failure.

Automated Debugging Techniques

Throughout the years, analysts have characterized

progressively complex debugging methods, moving

from for the manual to profoundly automated ones.

Simultaneously, foundation to help these tasks has

Volume 3, Issue 1, January-February-2018 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 1843

also been developed. Therefore, the aggregate work

done is wide [17].

The delta debugging algorithm sums up and

simplifies the failure causing test cases to a small test

case that still produces the failure. It secludes the

differences between a failing and a passing test case

[13].

II. Literature Review

Weiser proposed one of the first techniques for

supporting automated debugging and, in particular,

faults localization: program slicing [4, 5]. Given a

program P and a variable v used at a statement s in P,

slicing computes all of the statements in P that may

affect the value of v at s. By definition, if the value of

v in s is erroneous, then the faulty statements that

led to such erroneous value must be in the slice. Any

statement can be safely ignored during debugging if

it is not in the slice. Although slicing can generate

sets of related statements, in most sensible cases these

sets are too substantial to be helpful in any way for

debugging [6]. To address this issue, researchers

found distinctive varieties of slicing went for

diminishing the span of the processed cuts. Dynamic

slicing figures slices for a specific execution. In the

upcoming years, diverse variations of dynamic slicing

have been proposed with regards to debugging, for

example, pruned slices [6], data-flow slices [7],

relevant slices [8] and critical slices [9]. These

methods can extensively diminish the size of slices,

and hence possibly enhance debugging. Yet, these

debugging techniques are rarely used in practice.

Studies with Programmers

In the initial study of Weiser [4], 3 programs were

examined by 21 programmers whose size scaled

between 75 and 150 LOC. This research did not

directly assess if programmers could productively

debug with slicing. Overall, slices were perceived

altogether significantly more regularly than other

different fragments, which recommend that software

engineers have a tendency to follow the flow of

execution when exploring an error while debugging

[16].

The broadest assessment of a debugging approach till

date is the experimental investigation of the Whyline

tool [10]. Whyline centers on helping amateur

clients with defining theories and making natural

inquiries about a program's conduct. Whyline

demonstrates what a matured program slicing tool

can accomplish by blending perception, dynamic

cutting, programmed thinking, and a smooth UI in a

single tool. Members that utilized Whyline could

finish the job twice as quick than members utilizing

just a conventional debugger [11].

In outline, as the short study in this area appears,

experimental proof of the convenience of numerous

automated troubleshooting approaches is restricted,

on account of slicing for most other types of systems,

when not totally absent. This circumstance makes it

hard to evaluate the pragmatic adequacy of the

procedures proposed to understand which qualities

of a strategy can make it fruitful.

The limitations of slicing-based approaches can be

overcome by following a different philosophy, aimed

by an alternative family of debugging techniques.

These techniques observe the characteristics of the

executions of failing programs and compare them to

characteristics of passing executions, thereby

identifying faulty code. This type of information can

be gathered only by rerunning the program against

the input that caused the failure. In general, the

potential effectiveness of such techniques remains

unknown without a clear understanding of how

developers would use these in practice.

III. Discussion and Findings

In this section, we describe our findings about the

behavior of programmers and discuss about

developers’ want values, overviews, and explanations.

3.1. Behaviour of Programmers

Volume 3, Issue 1, January-February-2018 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 1844

3.1.1. Programmers Fixed the Failure Sometimes

without Tool, Not the Fault

Ideally, software engineers are guided based on their

understanding of the failure to a root cause while

debugging. However, this does not always happen in

practice. Sometimes developers find that, they can

stop the failure from occurring without actually

fixing the fault through experimentation and control

of the program.

.

Observation 1 - Developers may be ensured of fault

correction with the help of automated debugging

tool instead of simply patching failures

3.1.2 Developers Need Overviews, Explanations and

Values

A combination of the ranking tool was used by

developers (especially for locating faults) and

conventional troubleshooting (especially for

understanding fault)[19]. Automated Test cases are

executed during automated debugging. Exploring

unfamiliar code can suggest many promising starting

places for developers by using automated debugging

tool. The tool displays appropriate code entrance

points thereby helping in program understanding

even though the tool couldn’t pinpoint the correct

location of the fault. Developers quickly disregard

the tool if they felt they could not trust the results or

understand how such results were computed.

Developers would be permitted to explore the failure

in a more methodical and data-driven manner, if

they were provided with such details. Developers are

currently presented with a set of apparently

disconnected statements and no additional support

when using these tools, rather than working with the

familiar and reliable step-by-step approach of a

traditional debugger.

Observation 2–By providing information on results

that include test cases, data values and information

about slices, faults can be easily identified.

Threats to Validity

Our study has concentrated more on skilful

developers. Students were the participants of our

study, who did not have the similar experience of

expert developers, which could confine what can be

deduced from the research. Yet quite a few members

had quite a long or little experience as developers.

Our outcomes may therefore not sum up to other

projects and faults, and investigations are expected to

affirm our observations made in the beginning and

analyses. Nevertheless, our outcomes are encouraging

and enabled us to make some intriguing, yet

preliminary, perceptions to explain additional studies

and give a technique for governing such studies. An

ultimate warning to credibility relates to the nature

of the failure information.

3.3 Where does it lead to?

 Hybrid, semi-automated fault localization

techniques

 Debugging of field failures (with limited

information)

 Failure understanding and explanation

 (Semi-)automated repair and workarounds

IV. Proposed Methodology

4.1 Overview of the Design

To overcome the issues and failures faced by the

above tools and techniques, we hereby propose our

idea to combine automated debugging tools with

mutation testing so that we could use these tools to

identify the mutants faster and also to ensure that

our program works in an expected way [14]. Delta

debugging, a single algorithm, is enough to decide

the situations that lead to failure. Delta debugging

tests a program systematically and automatically to

confine failure initiating situations such as the

Volume 3, Issue 1, January-February-2018 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 1845

program input, changes to the program code, or

executed statements [12, 15].

teps involved in this methodology can be listed as

follows:

Step 1: Input the faulty programs for testing.

Step 2: Generate mutants into the programs which

result in patched programs.

Step 3: Input the test cases.

Step 4: Validate the patched programs against the test

cases using automated debugging tools, which are

designed based on delta debugging algorithm to

minimize the time involved in debugging.

Step 5: The output generated is a repaired program

that does not have any faults and executing without

any failure.

The architectural view of how this can be

implemented is shown below:

Figure 1 : Integration of mutuant operators and

automated debugging

Study Results

We ran an initial experimental test through Vaultry,

a bank application program coded in C++ consisting

of 675LOC. The results obtained were far superior

when compared to normal automated debugging

tools. The tools were able to locate the bugs faster

using delta debugging algorithm rather than the tools

that work on normal tracing procedures. Thereby,

we recommend this technique to be implemented at

a large level so as to minimize testing time and cost

involved in testing phase.

V. Future Work

Delta debugging speeds up the main issue in

debugging – the timeframe. Therefore, by developing

automated tools which can work on delta debugging

algorithms, the computation can be done at a faster

rate. Our long-term vision is that, to debug a

program, one should setup an appropriate function

for testing. At that point, one can allow the computer

to do the debugging, separating failure situations by

using a blend of program analysis and automated

testing. Automatic isolation of failure is no longer

past the cutting edge. It is just a question of how

much computing power and program analysis you

are willing to spend on it.

VI. Conclusion

Researchers have envisioned how automated

debugging tools can help developers fix defects in

code for 30 years. In this paper, we obtained both

positive and negative results by having real

programmers act this vision out. We find that the

ranking tool is considered no more effective than

traditional debugging for our more challenging task

even when an artificially-high rank is used. The

defects observed in the ranking tool may show

general shortcomings in today’s automated

debugging techniques that limit their viability. The

proposed methodology checks for the effectiveness

and accuracy of a program to identify the faults or

errors in the system framework within a little

timeframe and at the least cost. Developers have

been waiting a long time for usable automated

debugging tools, and we have officially gone far from

the beginning of debugging. We must steer research

towards more promising directions, to further

advance the level of development in this area, that

take into account the way programmers actually

debug in real scenarios.

Volume 3, Issue 1, January-February-2018 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 1846

VII. REFERENCES

[1]. I. Vessey. Expertise in debugging computer

programs.International Journal of Man-

Machine Studies: A Process Analysis,

23(5):459{494, 1985.

[2]. T. Ball, M. Naik, and S. K. Rajamani. From

symptom to cause: localizing errors in counter

example traces. In Proceedings of the

Symposium on Principles of Programming

Languages (POPL 03), pages 97{105, New

Orleans, LA, USA, 2003.

[3]. H. Cleve and A. Zeller. Finding failure causes

through automated testing. In Proceedings of

the International Workshop on Automated

Debugging (AADEBUG 00), Munich, Germany,

2000.

[4]. M. Weiser. Program slicing.In Proceedings of

the International Conference on Software

Engineering (ICSE 81), pages 439{449, San

Diego, CA, USA, 1981.

[5]. M. Weiser. Program slicing.IEEE Transactions

on Software Engineering, 10(4):352{357, 1984.

[6]. X. Zhang, N. Gupta, and R. Gupta. Pruning

dynamic slices with confidence. In Proceedings

of the Conference on Programming Language

Design and Implementation (PLDI 06), pages

169{180, New York, NY, USA, 2006.

[7]. X. Zhang, R. Gupta, and Y. Zhang.Precise

dynamic slicing algorithms.In Proceedings of

the International Conference on Software

Engineering (ICSE 03), pages 319{329,

Washington, DC, USA, 2003.

[8]. T. Gyimothy, A. Beszedes, and I. Forgacs.An

efficient relevant slicing method for

debugging.In Proceedings of the European

Software Engineering Conference and

Symposium on the Foundations of Software

Engineering (ESEC/FSE 99), pages 303{321,

London, UK, 1999.

[9]. R. A. DeMillo, H. Pan, and E. H.

Spafford.Critical slicing for software fault

localization.In Proceedings of the International

Symposium on Software Testing and Analysis

(ISSTA 96), pages 121{134, San Diego, CA,

USA, 1996.

[10]. A. J. Ko and B. A. Myers. Debugging

reinvented: asking and answering why and

why not questions about program behavior. In

Proceedings of the International Conference on

Software Engineering (ICSE 08), pages 301{310,

Leipzig, Germany, 2008.

[11]. A. J. Ko and B. A. Myers. Finding causes of

program output with the Java Whyline. In

Proceedings of the International Conference on

Human Factors in Computing Systems (CHI

09), pages 1569{1578, Boston, MA, SA, 2009.

[12]. M. Ducass´e (ed). In Proceedings of the Fourth

International Workshop on Automated

Debugging (AADEBUG 2000), August 2000,

Munich.

[13]. Zeller and R. Hildebrandt, "Simplifying and

isolating failure-inducing input," in IEEE

Transactions on Software Engineering, vol. 28,

no. 2, pp. 183-200, Feb 2002.

[14]. W. Visser, "What makes killing a mutant hard,"

2016 31st IEEE/ACM International Conference

on Automated Software Engineering (ASE),

Singapore, 2016, pp. 39-44.

[15]. Groce M. A. Alipour C. Zhang Y. Chen J.

Regehr "Cause reduction: Delta debugging even

without bugs" Software Testing Verification &

Reliability vol. 26 no. 1 pp. 40-68 Jan. 2016.

[16]. T. S. Gadge and N. Mangrulkar, "Approaches

for automated bug triaging: A review," 2017

International Conference on Innovative

Mechanisms for Industry Applications

(ICIMIA), Bangalore, 2017, pp. 158-161.

[17]. E. C. Campos and M. d. A. Maia, "Common

Bug-Fix Patterns: A Large-Scale Observational

Study," 2017 ACM/IEEE International

Symposium on Empirical Software Engineering

and Measurement (ESEM), Toronto, ON, 2017,

pp. 404-413.

[18]. KOCHHAR, Pavneet Singh; XIA, Xin; David

LO; and LI, Shanping. Practitioners'

expectations on automated fault localization.

Volume 3, Issue 1, January-February-2018 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 1847

(2016). Proceedings of the 25th ACM

International Symposium on Software Testing

and Analysis: ISSTA 2016, Saarbrucken,

Germany; 2016 July 18-20.

[19]. Tien-Duy B. Le1 , David Lo1 , Claire Le Goues ,

and Lars Grunske. A learning-to-rank based

fault localization approach using likely

invariants, 2016. In the Proceedings of the 25th

ACM International Symposium on Software

Testing and Analysis: ISSTA 2016,

Saarbrucken, Germany; 2016 July 18-20.

[20]. Muhammad Ali Gulzar, MatteoInterlandi,

Xueyuan Han, Mingda Li, Tyson Condie, and

Miryung Kim. “Automated Debugging in Data-

Intensive Scalable Computing.”In ACM

Symposium on Cloud Computing September

25, 2017. Santa Clara, California.

