
CSEIT11951144 | Received : 25 Feb 2019 | Accepted : 04 March 2019 | March-April -2019 [5 (2) : 21-28]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2019 IJSRCSEIT | Volume 5 | Issue 2 | ISSN : 2456-3307

DOI : https://doi.org/10.32628/CSEIT11951144

21

Online Adaptive Assessment Platform
Dr. S. Lokesh, Suvetha. S, Swathi. M

Department of Information Technology, Hindusthan Institute of Technology, Coimbatore Tamil Nadu, India

ABSTRACT

In this paper the use of online learning, assessment and self-evaluation platform to aid in teaching and

assessment of computer programming and Aptitudes in classrooms are discussed. Based on the skills of the

users, the programming and aptitude concepts are taught. This paper describes the technology and

implementation of the learning and assessment platform and new methods for automated assessment of

programming assignments and for competitive exams. Finally, the application of the system is to help the users

to learn the concept and to crack the exams easily.

Keywords : Assessment, Automated Assessment, Learning Platform, Online Learning System

I. INTRODUCTION

Teaching for many learners at a specific time is a

challenging exercise. The teaching, learning and self-

evaluation of computer programming and aptitude on

a single platform is a challenging task. Learning the

computer programming is a toxic task, it needs

hands-on practicing more and more than the other

subjects. Practicing programming concepts regularly

helps the learners to solve computational

programming concepts easily. This hands-on

approach to solving problems through tinkering and

actively engaging in the making of solution for

solving a problem [1].

In large programming classes, there is a problem of a

scarcity of computer and network facilities for

students, which can place a hugely problematic

constraint on assessment, self-evaluation and learning

methods. Authentic and constructively aligned

assessment of programming should follow the setting

in which students might write their programs in the

real world: on a computer with the instantaneous

feedback from the programming environment,

iterative submissions, and a debugging or trial-and-

error approach to produce functional programs.

However, many programming classes are assessed

using traditional written exams despite many

lecturers’ discomfort with that approach

programming. Written assessments also have a

significant administrative disadvantage in that the

process of grading these assessments is a laborious

and extremely time-consuming process. The authors

have noted that grading a typical written

programming exam for a 500-student class can

require up to 50 person-hours. This paper describes

the design and implementation of an online learning

and assessment platform for teaching, assessing and

self- evaluating programming [2-5]. This platform

allows for online completion of programming and

aptitude assignments using automated assessment

tools, allowing both the standard

compiler/interpreter for programming feedback as

well as customized contextual instructor guidance.

This platform was utilized for both formative and

summative assessments in an introductory

http://ijsrcseit.com/
http://ijsrcseit.com/
http://ijsrcseit.com/
https://doi.org/10.32628/CSEIT11951144

Volume 5, Issue 2, March-April -2019 | http://ijsrcseit.com

Dr. S. Lokesh et al Int J Sci Res CSE & IT. March-April-2019 ; 5(2) : 21-28

 22

programming class of many engineering students.

This application has a future scope that helps the

students how to learn program and aptitude[6-8].

II. EXISTING SYSTEM

The process of learning the skills of computer

programming involves understanding the basic

concepts. However, learning these concepts form

only a small part of the true complexity of solving

programming problems. Even when solving a simple

programming problems will cause emergent issues [9-

12]. It is difficult to teach all the logics to solve the

problems. However, it is impossible to teach all the

permutations of the instructions and the algorithmic

structure that helps to solve the complexity problems.

Hence, the users of programming each construct

their own body of knowledge and understanding that

expands when the user encounters and overcomes

additional problems.

In modern, internet-connected learning environment,

the process of learning programming can be neatly

described by constructionism automated assessment

and self-evaluation, where learning occurs through

creatively solving problems rather than the

transmission and reception of knowledge of solving

the problems. This building of knowledge is most

reliably achieved when the learner is experiencing

the process of constructing a meaningful product

rather than reproducing rote learned series of

concepts automated assessment[13-15]. To foster

these processes, a teaching and learning strategy

should allow a student to tackle problems in an

environment where they can explore and tinker with

their solutions while receiving real-time guidance.

The method used to assess a user level of

understanding of a topic is also an important factor to

consider when designing a teaching and learning

strategy. We consider two key characteristics of

programming assessment: authenticity and

constructive alignment. In order to be authentic,

assessment of programming ability should allow the

user to tinker with a solution with the benefit of

feedback from the compiler or interpreter. This is a

far more authentic situation than a written test, as a

programmer is rarely asked to produce a working

program on paper[16-20]. Further, if the natural

method of learning programming is through a

constructionist process of experimentation and

problem solving, then the assessment should also take

place in a context which allows the same type of

experimentation during the assessment.

The online learning and evaluating system presented

in this paper addresses the approach concerns of both

the learning environment and assessment of

programming. As described in the coming sections,

the system emulates a development environment,

allowing the users to engage with the programming

tasks in a setting comparable to real-world

programming environment. In addition to the built-

in compiler and interpreter feedback, the system also

allows the instructor to devise automated guidance to

help users overcome problems. The exact same

system can be used for formal assessment, ensuring

that the users are assessed in a realistic manner that is

aligned with their learning process.

III. STRUCTURE OF THE ONLINE LEARNING

ADAPTIVE SYSTEM

We have proposed system and implementing a web

application for descriptive type answers checking and

its automatic assessment .Till now the systems are

developed for the Automatic Evaluation of Single

Sentence Descriptive Answer but by this application

we are trying to provide automatic evaluation of

multiple sentence descriptive answers. To increase

the tolerance of the system we are going to use the

Pattern Matching Technique Algorithm. We are

building new system in which the descriptive

examinations are also online [21-23].

http://www.ijsrcseit.com/

Volume 5, Issue 2, March-April -2019 | http://ijsrcseit.com

Dr. S. Lokesh et al Int J Sci Res CSE & IT. March-April-2019 ; 5(2) : 21-28

 23

The system described in this work is based on the

popular Moodle open-source learning platform. This

platform was developed by Dougiamas, who decided

to build a free and open-source learning and

assessment platform focused on constructivist

pedagogical principles. Moodle is licensed under the

GPL written for the GNU project this protects the

rights of end users to run, study, share and modify

the software. This open source principle has fostered

a large and active development community

surrounding the Moodle project with constant active

contribution to the core code-base and many

community developed plug-ins that extend the

capabilities of the platform in a variety of ways.

Moodle itself is a PHP-based Course Management

System (CMS) that can be deployed on a variety of

operating systems, web servers and database systems.

The full source code is available for free and is well

documented which allows for end users to tinker

with the system. However, easy one-click automated

installation packages have also been created by

companies like Bitnami to make deployment

exceedingly simple. Moodle provides all the core

features one would expect from a CMS, which

includes robust user management, diverse content

management tools, scheduling tools, a variety of

assessment tools, messaging, a grade management

system, integration of plug-ins and support for

learning module standards like SCORM .This open

community has led to the development of many

useful plug-ins for Moodle, and the system described

in this paper is based on a Moodle plug-in called the

Virtual Programming Lab (VPL) [24-26].

A. Virtual Programming Lab (VPL) Plug-In

The VPL plug-in is a system designed to present and

assess programming assignments through the Moodle

platform. The plug-in consists of three main elements.

The first is the main plug-in module that runs on the

Moodle server; the second is an editor component

that allows for the editing of source code in the

browser. Finally, there is the jail server that acts as a

sandbox environment that executes the student’s

code. The main plug-in module of VPL, which runs

on the Moodle server, manages the descriptions of

the assignments, the marking scripts and protocols,

the grading process, scheduling settings, access

restrictions, similarity checks and controls how a

student’s code will be executed on the jail server. The

editor is an integral part of the VPL plugin and

provides a capable in-browser editor environment

that supports syntax highlighting for the various

supported languages and multiple file support

through tabs. The editor allows students to edit the

assignment source code, provides the interface to the

development environment to receive feedback from

compilers or interpreters and allows the student to

submit assignments for automatic assessment,

feedback and grading. The final element of the VPL

system are the jail servers These are the servers that

the VPL plug-in transmits a student’s code to for

execution. These servers are where the tool chains for

the various supported languages are installed. As of

the writing of this report, VPL can currently execute

27 languages with varying levels of support for syntax

highlighting, debugging and graphical user interfaces.

Executing student’s code is a risky endeavour for a

server as students are prone to producing bad code

that can inadvertently compromise an operating

system through memory leaks, infinite loops or

system calls. Some students are also bound to test the

limits of an execution environment and attempt to

execute malicious code on the server. In this way, the

VPL system can control the maximum allowed

system resources that a given student program can

use and protect the jail system from erroneous or

malicious code during execution.

The VPL system supports using multiple jail servers

for a single Moodle environment and manages the

load balancing between these servers when many

students are using the system simultaneously. When

a student submits a program for execution it is

http://www.ijsrcseit.com/

Volume 5, Issue 2, March-April -2019 | http://ijsrcseit.com

Dr. S. Lokesh et al Int J Sci Res CSE & IT. March-April-2019 ; 5(2) : 21-28

 24

transmitted to the jail server along with the

execution scripts created by the instructor. These

scripts are then used to execute the code using the

appropriate compiler or interpreter. The output of

the program, compiler or interpreter is then sent

back to the student with a standard command-line

interface[27-29]. VPL has recently added support for

graphical output from programs in addition to the

command line interface. This is achieved by using the

VNC remote access software that is built into most

modern Linux distributions. This interface then

streams a basic windows environment back to the

student’s browser allowing them to interact with the

graphical elements of the environment they are

currently engaged with. The VPL system also

includes a source code similarity measurement

system which is used to analyses the submissions for

a given assignment and report back on their relative

similarities using an easy to navigate interface. This

tool makes it possible to determine which students

submitted plagiarized code with a minimal time

investment. For use of VPL in strict testing

environments, the plug-in includes the standard

Moodle activity security features that provide the

ability to control access to an activity using a

password and to limit access by network addresses.

This allows an instructor to limit access to an activity

to a specified set of computers, such as those in the

lab where the assessment is being conducted. VPL

can also disable the ability to copy and paste text in

the editor, which ensures that a student was the

author of an activity[30-32].

B. Automated Assessment using VPL

The real power of VPL as a tool for teaching and

assessing programming assignments is in its

automated execution and assessment capabilities.

VPL runs a student’s code using a BASH script to

prepare the source files, compile the code (or send it

to the relevant interpreter) and then execute the code.

The standard output stream of this process is then

provided to the student via a console window in their

browser where a student can interact with the

running program. When a program is being assessed,

a different BASH script is used to compile This

assessment script will then provide automated input

to the program and evaluate its behaviour for grading

purposes. Out of the box VPL includes default run,

evaluation and debugging scripts for all the supported

languages. A standard format for defining basic

evaluation test cases is also provided.

Using the built-in evaluation scripts involves defining

a series of test cases where the input provided to the

program is defined along with the expected output

that the program should print to the standard output

stream. Grading conditions are provided for each test

case. VPL includes a C++ grading program which

takes in the specified test cases and uses them to

evaluate a student’s submission and automatically

grade the submission. While this capability provides

an easy way to quickly produce automatically

assessed programming assignments it is very limited.

Input can only be provided via the standard input

stream and the output is naively assessed as a single

output numeric or direct string comparison. This

means that for a student to be graded as correct their

program’s output must conform exactly to the

specified solution output with no extra spaces or

new-line characters. This can often lead to confusion:

defining the exact form of the required output can be

challenging, and students will often not understand

the formatting issues created by spaces and new-line

characters which are difficult to spot in a text console.

Unfortunately, the execution script side of VPL is not

very well documented and the only real source of

information provided comes in the form of the

default run and evaluation BASH scripts provided

with the VPL source code. The first thing the custom

evaluation does is load the file which contains the

flags produced by the validation process. If any of the

three validation conditions have been detected the

appropriate message is given to the student and they

receive a zero grade. Next, the script will run the

http://www.ijsrcseit.com/

Volume 5, Issue 2, March-April -2019 | http://ijsrcseit.com

Dr. S. Lokesh et al Int J Sci Res CSE & IT. March-April-2019 ; 5(2) : 21-28

 25

student’s submission. In order to confirm that the

random data set is indeed random, another phase of

validation is performed. The data set is recorded to

file. The student’s submission is run a second time

and the new data set is compared to first data set. If

the data set is truly random these arrays’ will be

different. If they are not, then it indicates that the

student has manipulated the contents of the dataset.

They receive an appropriate error message and grade.

The script then calculates the model sorting signature

for the random data set. If the student’s submission

matches this sorting signature, then they receive full

marks. If they sorted the algorithm using a different

algorithm but the array is sorted correctly, they will

receive half credit. Otherwise they have not met the

question specifications and will receive a zero grade.

IV. APPLICATION OF LEARNING SYSTEM TO

GOALS

This section will discuss how the learning system

supports the pedagogical philosophy described in

Section II. The first major benefit of the system is

that it lives in the cloud and is accessible from any

decently sized device that can run a modern web

browser. This means that students have access to a

code editor and the relevant tool chains from any

internet connected computer without needing to

install any specialized software. This has greatly

increased the access to these technologies, especially

for students who have limited resources at their

disposal. The system was built to support a

constructionist pedagogical philosophy and does so

far better than traditional assessment of programming.

The automated assessment tools can provide real-

time feedback from the compiler/interpreter and

built-in clues and guidance from the instructor,

meaning that students can work at their own pace to

solve programming problems but are given

appropriate feedback every step of the way. An

instructor can write scripts that detect common

mistakes and provide clues on how to address these

common errors to the student. In this way, the

student can work at their own pace and work

towards a solution on their own terms and when they

have solved a problem the system will inform them

of the fact. This is important because often students

are not able to identify when a problem is adequately

solved and by having the system automatically

inform them they get the satisfaction of having

solved a problem on their own without having to be

told days later that they were successful through a

manually graded assignment. The system also

provides an appealing alternative to traditional partial

credit grading. Paper-based assessments are

inherently submitted once, and the submitted work

must be evaluated as is. With the system presented

here, students can be expected to correct small

mistakes based on the compiler or instructor

feedback and produce (and test) a working program.

This expectation of a working solution fosters

learning to develop an understanding rather than

incentivizing memorization to earn partial credit.

Note that the system does not preclude partial credit:

an instructor can build assessments that assess levels

of completion of a programming task, or allow for

common mistakes (as in the sort example). This

flexibility caters for all levels of student performance

but still ensures that each student is producing at

least basic complete programs. The automation also

means that it becomes possible to very quickly and

consistently assess the level of capability that a

student has demonstrated through their performance.

If deemed appropriate, grading schemes can also be

adapted to include number of incorrect submissions

or compilation attempts, code efficiency, submission

time, and more; the combination of the course

management system and scripting environment is

remarkably flexible. The system also provides a trove

of data about student participation and progress,

keeping track of almost every action a student takes.

This data can definitively answer questions about

student participation and progress which might

traditionally rely on self-reporting from students.

http://www.ijsrcseit.com/

Volume 5, Issue 2, March-April -2019 | http://ijsrcseit.com

Dr. S. Lokesh et al Int J Sci Res CSE & IT. March-April-2019 ; 5(2) : 21-28

 26

V. CONCLUSION

This article describes the implementation of an

online learning assessment system that enables the

automated teaching and assessment of computer

programming tasks for large classes. The pedagogical

philosophy employed by the authors in teaching

programming is described and how the implemented

system addresses the goals of this philosophy is

discussed. The learning system is implemented using

the open source learning platform Moodle and an

open source plug-in, VPL, which supports the

execution and assessment of a large variety of

programming languages. The author describes the

VPL system and how the scripting engine used by

VPL can be used to build flexible and robust

automatically assessed programming activities. A

number of new techniques for building these

evaluation scripts are presented in detail, allowing

future efforts to reproduce and expand upon this

work. The benefits of the system for use in a large

class are also discussed. Firstly, the system increases

the amount of real time feedback the students receive

which is significantly higher than in the traditional

model where a single lecturer and a handful of tutors

can only provide limited attention to the large

number of students in a class. The students can learn

and experiment with the work at their own pace and

in their own way. The amount of administration

work is significantly reduced for the lecturer and

content produced can be reused in many ways.

Finally, the system provides a trove of data that can

be used to ask interesting questions about the class to

aid in self-reflection and course execution. The

learner‘s descriptive answer and standard answer is

converted into its graphical form and then, to apply

some of the similarity measures such as string match,

word Net and spreading process for the calculation of

similarity score are the major steps in the proposed

algorithm. The algorithm provides a solution for the

automation of descriptive answer evaluation process.

Automatic evaluation of single sentence descriptive

answer would be beneficial for the universities,

schools and colleges for academic purpose by

providing ease to faculties and the examination

evaluation cell.

VI. FUTURE SCOPE

In the future, we are going to introduce advanced

code analysis mechanism that can inspect students’

code according to software quality metrics. We

encourage that students can write code with good

qualities in addition to writing code that meets

assignment requirements. Moreover, we also want to

develop a team project feature that allows instructors

to form teams and assign team projects.

VII. REFERENCES

[1]. B. S. Bloom, M.D. Engelhart, E.J. Furst, W.H.

Hill, D.R. Krathwohl, Taxonomy of education

objectives: The classification of educational

goals. Handbook I: Cognitive domain. New

York: David McKay Company, 1956.

[2]. S. Papert, “Constructionism: A New

Opportunity for Elementary Science

Education,” Massachusetts Institute of

Technology, Media Laboratory, Epistemology

and Learning Group: National Science

Foundation, Award 8751190, 1986.

[3]. J. Sheard, Simon, A. Carbone, D. D'Souza, and

M. Hamilton. “Assessment of programming:

pedagogical foundations of exams,” in Proc. of

the 18th ACM conference on Innovation and

Technology in Computer Science Education

(ITiCSE '13), 2013, pp. 141-146.

[4]. P. Ihantola, T. Ahoniemi, V. Karavirta, and O.

Seppälä. “Review of recent systems for

automatic assessment of programming

assignments,” in Proc. of the 10th Koli Calling

International Conference on Computing

http://www.ijsrcseit.com/

Volume 5, Issue 2, March-April -2019 | http://ijsrcseit.com

Dr. S. Lokesh et al Int J Sci Res CSE & IT. March-April-2019 ; 5(2) : 21-28

 27

Education Research (Koli Calling ’10), 2010, pp.

86-93.

[5]. E. Costello, “Opening up to open source:

looking at how Moodle was adopted in higher

education,” in Open Learning: The Journal of

Open, Distance and e-Learning, Vol. 28, Issue

3, 2013.

[6]. (2016) The GNU Licenses Website. Available:

http://www.gnu.org/licenses/licenses.en.html

[7]. (2016) Bitnami Website. OnlineAvailable:

https://bitnami.com/

[8]. (2016) SCORM Website. OnlineAvailable:

http://www.adlnet.gov/adl-research/scorm/

[9]. J.C. Rodríguez-del-Pino, R-R. Enrique, and H-

F. Zenón, “A Virtual Programming Lab for

Moodle with automatic assessment and

antiplagiarism features,” in Proceedings of the

2012 International Conference on e-Learning,

e-Business, Enterprise Information Systems, &

e-Government, 2012.

[10]. (2016) VPL Plug-In website. OnlineAvailable:

http://vpl.dis.ulpgc.es/

[11]. D. Thiébaut, "Automatic evaluation of

computer programs using Moodle's virtual

programming lab (VPL) plug-in," Journal

ofComputing Sciences in Colleges, Vol. 20,

Issue 6, 2015.

[12]. J.B. Biggs, C. Tang, Teaching for quality

learning at university: What the student does.

McGraw-Hill Education (UK), 2011.

[13]. T. Staubitz, H. Klement, J. Renz, R. Teusner

and C. Meinel, "Towards practical

programming exercises and automated

assessment in Massive Open Online Courses,"

Teaching, Assessment, and Learning for

Engineering (TALE), 2015 IEEE International

Conference on, Zhuhai, 2015, pp. 23-30.

[14]. Kumar R, Lokesh S & Ramya Devi, M. (2018),

Identifying Camouflaging Adversary in

MANET Using Cognitive Agents, Wireless

Personal Communication,

https://doi.org/10.1007/s11277-018-5378-1.

[15]. S. Lokesh, S. Malathy, K. Murugan and, G.

Sudhasadasivam (2010), Adaptive Slot

Allocation and Bandwidth Sharing for

Prioritized Handoff Calls in Mobile Networks,

International Journal of Computer Science and

Information Security, Vol.8 , 52-57.

[16]. S.Lokesh and G.Balakrishnan, "Robust Speech

Feature Prediction Using Mel-LPC to Improve

Recognition Accuracy", Information

Technology Journal, vol. 11, no.11, pp. 1644-

1699, 2012.

[17]. Lokesh, S., Malarvizhi Kumar, P., Ramya Devi,

M. et al. An Automatic Tamil Speech

Recognition system by using Bidirectional

Recurrent Neural Network with Self-

Organizing Map Neural Comput & Applic

(2018). https://doi.org/10.1007/s00521-018-

3466-5

[18]. Lokesh, S. & Devi, M.R. Speech recognition

system using enhanced mel frequency cepstral

coefficient with windowing and framing

method Cluster Comput (2017).

https://doi.org/10.1007/s10586-017-1447-6

[19]. Kanisha, B., Lokesh, S., Kumar, P.M. et al.

Speech recognition with improved support

vector machine using dual classifiers and cross

fitness validation Pers Ubiquit Comput (2018).

https://doi.org/10.1007/s00779-018-1139-0

[20]. S.Lokesh and G.Balakrishnan, "Speech

Enhancement using Mel-LPC Cepstrum and

Vector Quantization for ASR", European

Journal of Scientific Research, vol.73,No.2, pp.

202-209, 2012.

[21]. Selvaraj, L., and Ganesan, B. (2014) Enhancing

speech recognition using improved particle

swarm optimization based Hidden Markov

Model. Scientific World J. DOI:

10.1155/2014/270576.

[22]. S. Lokesh, G. Balakrishnan, S. Malathy, and K.

Murugan, “Computer Interaction to human

through photorealistic facial model for inter-

process communication”, in International

http://www.ijsrcseit.com/

Volume 5, Issue 2, March-April -2019 | http://ijsrcseit.com

Dr. S. Lokesh et al Int J Sci Res CSE & IT. March-April-2019 ; 5(2) : 21-28

 28

Conference on Computing Communication and

Networking Technologies (ICCCNT), 2010, pp.

1-7.

[23]. Priyan Malarvizhi Kumar, S. Lokesh, R.

Varatharajan, Gokulnath Chandra Babu, P.

Parthasarathy, Cloud and IoT based disease

prediction and diagnosis system for healthcare

using Fuzzy neural classifier, Future Generation

Computer Systems,2018,

https://doi.org/10.1016/j.future.2018.04.036.

[24]. Lokesh, S., Kanisha, B., Nalini, S. et al. “Speech

to speech interaction system using Multimedia

Tools and Partially Observable Markov

Decision Process for visually impaired

students”, Multimed Tools Appl (2018). PP.1-

20, https://doi.org/10.1007/s11042-018-6264-2

[25]. Kumar, R., & Lokesh, S. (2015). “Fast and

secure transmission of information among

groups using a key management scheme”.

International Journal of Computer Science and

Mobile Computing, 4(11), 40–47.

[26]. B. Manikandan, T. Senthilkumar, Dr. S. Lokesh,

M. Ramya Devi, " Opportunities and Challenges

in Airborne Internet with Fly-In, Fly-Out

Infrastructure", International Journal of

Scientific Research in Science, Engineering and

Technology(IJSRSET), Print ISSN : 2395-1990,

Online ISSN : 2394-4099, Volume 4 Issue 4,

pp.1464-1469, March-April 2018.

[27]. T. Senthilkumar, B. Manikandan, M. Ramya

Devi, S. Lokesh, "Technologies Enduring in

Internet of Medical Things (IoMT) for Smart

Healthcare System", International Journal of

Scientific Research in Computer Science,

Engineering and Information Technology

(IJSRCSEIT), ISSN : 2456-3307, Volume 3 Issue

5, pp. 566-572, May-June 2018.

[28]. M. Ramya Devi, S. Lokesh, B. Manikandan,

T.Senthilkumar, "Vehicular Cloud Computing

Based Intelligent Transportation System for

Traffic Management and Road Safety",

International Journal of Computer Sciences and

Engineering, Vol.6, Issue.7, pp.970-975, 2018.

[29]. Krishnan, S., Lokesh, S. & Ramya Devi, M.

“Internet of things for knowledge

administrations by wearable gadgets”, Journal

Medical System (2018) 42: 230.

https://doi.org/10.1007/s10916-018-1081-8

[30]. Vijayarangam, S., Megalai, J., Krishnan, S. et al.

“Vehicular Cloud for Smart Driving Using

Internet of Things “ Journal Medical System

(2018) 42: 240. https://doi.org/10.1007/s10916-

018-1105-4

[31]. Ramya Devi M, Krishnan S, Lokesh S. An

optimal Internet of Things–based smart cities

using vehicular cloud for smart driving.

Concurrency Computat Pract Exper. 2018;

e5037. https://doi.org/10.1002/cpe.5037

[32]. Sivakumar Krishnan, S. Lokesh, M. Ramya

Devi, “An efficient Elman neural network

classifier with cloud supported internet of

things structure for health monitoring system”,

Computer Networks, Volume 151, 2019, Pages

201-210.

https://doi.org/10.1016/j.comnet.2019.01.034

Cite this article as :

Dr. S. Lokesh, Suvetha. S, Swathi. M, "Online

Adaptive Assessment Platform", International Journal

of Scientific Research in Computer Science,

Engineering and Information Technology

(IJSRCSEIT), ISSN : 2456-3307, Volume 5 Issue 2, pp.

21-28, March-April 2019. Available at doi :

https://doi.org/10.32628/CSEIT11951144

Journal URL : http://ijsrcseit.com/CSEIT11951144

http://www.ijsrcseit.com/
https://doi.org/10.32628/CSEIT11951144
http://ijsrcseit.com/CSEIT11951144

