
Copyright: © the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed
under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-
commercial use, distribution, and reproduction in any medium, provided the original work is properly cited

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

ISSN : 2456-3307 (www.ijsrcseit.com)

doi : https://doi.org/10.32628/CSEIT1228644

328

Analysis of Game Tree Search Algorithms Using Minimax

Algorithm and Alpha-Beta Pruning
Prof. Sumit S Shevtekar, Mugdha Malpe, Mohammed Bhaila

Department of Computer Technology, Pune Institute of Computer Technology, Maharashtra, India

Article Info

Publication Issue :

Volume 8, Issue 6

November-December-2022

Page Number : 328-333

Article History

Accepted: 12 Nov 2022

Published: 28 Nov 2022

ABSTRACT

An important topic of research in computer systems is the optimization of

finding the optimum course of action based on different variables, such as the

environment's state, the system's goal, etc. The building of the entire state search

space, also known as the minimax algorithm, can result from any search

algorithm's attempt to find the best feasible solution from among all known

possibilities. The recursive backtracking algorithm known as Minimax is used to

select the next action in a game of strategy for two players. The algorithm works

well because it anticipates that your adversary will play well as well. However,

as the tree's depth increases, we observe that minimax frequently investigates

repetitive and unlikely situations. We'll also take a look at the minimax

extension known as alpha-beta pruning, which prohibits us from considering

states that won't be chosen. We will also examine a number of established

techniques for resolving two-player games, such as adversarial search and other

machine learning-based techniques.

Keywords : Minimax algorithm, Alpha-beta pruning, Two-Player games, Game

Theory, Game Tree Search Algorithms.

I. INTRODUCTION

The study of mathematical models of communication

tactics between decision-makers is known as game

theory. It is employed in numerous logic, computer

science, and social science domains. The game theory,

which now relies on a certain kind of behavioural

interaction, has evolved into a catch-all phrase for the

study of rational decision-making.

Scholars have noted the importance of game theory as

a tool for comprehending a variety of fields. Game

theory has been applied to create theories of ethical

or conventional behaviour, further used to evaluate,

anticipate, and define behaviour. Game theory-based

principles are applicable to definition and modelling,

business and economics, politics, project management,

philosophy, computer science, and other fields.

Recursive or backtracking algorithms include the

mini-max algorithm. It is utilised in game theory and

the decision-making process, as was previously

mentioned. Assuming that the opponent is likewise

playing really well, it provides the player a flawless

move. Recursion is used by the minimax method to

search across the game-tree. In 2-player games like tic

tac toe, chess etc. the min-max algorithm is

http://ijsrcseit.com/
http://ijsrcseit.com/

Volume 8, Issue 6, November-December-2022 | http://ijsrcseit.com

Prof. Sumit S Shevtekar et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., November-December-2022, 8 (6) : 328-333

329

frequently utilised [1]. The minimax choice for the

current state is computed using this algorithm. When

playing this game with two players, each player plays

the game so that they gain the most from it and the

opponent player gains the least. They select this

strategy so that they receive the greatest benefit and

their adversary receives the least benefit.

When exploring the game tree, the minimax method

traverses till the tree's terminal vertex before going

back up the tree using recursion. Minimax frequently

explores duplicate states and states that are unlikely to

be picked by the players, however, as the depth of the

tree rises. This is where we present the idea of an

additional optimization method that helps to avoid

this: pruning by alpha-beta.

A more advanced variant of the minimax method,

alpha-beta pruning has major advantages over the

minimax algorithm. As previously established, the

recursive backtracking of the game tree causes the

number of outcomes it must evaluate to exponentially

increase as the depth of the tree increases. By using a

technique called pruning, we may compare the

original result to the right minimax result and do so

without having to examine every vertex in the game

tree. Since it affects the two growth threshold factors

"alpha" and "beta," it is known as "alpha-beta

pruning."

II. LITERATURE SURVEY

The following table compares the 2-player game

theory approaches and algorithms to demonstrate the

literature review:

No. Algorithm Version

of

Method Examples

1 Negascout Minimax Reducing

Calculation,

that is, we

do not

zero-sum

games

tic-tac-

toe

thoroughly

explore

each node

by

excluding

options that

both

players

ignore.

checkers

2 Monte

Carlo

Tree

search

Alpha-

Beta

Pruning

It is a

simulation-

based best

first search

algorithm

that has

been

expanded

to support

pruning in

the Alpha-

Beta

pattern [3].

zero-sum

games

like tic-

tac-toe

3 Principle

Variation

Splitting

(PVSplit)

Alpha-

Beta

Pruning

It is a

parallel

Alpha-Beta

pruning

algorithm

that

stipulates

that before

exploring

more

branches,

one must

first search

the initial

branch at a

PV node.

zero-sum

games

like

checkers

4 Young

Brothers

Wait

Concept

Alpha-

Beta

Pruning

Here,

before

generating

the other

siblings in

parallel, the

first sibling

node is

searched.

-

Volume 8, Issue 6, November-December-2022 | http://ijsrcseit.com

Prof. Sumit S Shevtekar et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., November-December-2022, 8 (6) : 328-333

330

III. METHODOLOGY

A. ALGORITHMS

In the context of a game, this section discusses the

search algorithms Minimax, Alpha-Beta Pruning, and

NegaScout. A game tree that includes all of the

potential movements a player might make serves as

the foundation for all algorithms.

1. Minimax

A prominent backtracking method in game theory is

called Minimax. The Minimax algorithm iterates

around the game tree to find the optimum move,

returning it depending on the score at the leaf node.

You may find a more thorough explanation and

pseudocodes ahead. [1].

In two-person zero-sum games, each player attempts

to minimise their prospective loss (penalty) while

maximising the damage of their opponent. The

backtracking technique known as Minimax is used in

game theory to make decisions. It presumes that both

players are performing at their highest level.

 The terms "maximizer" and "minimizer" refer to two

players. The former seeks the highest score possible,

while the latter seeks the lowest score possible. The

name "minimax" was created as a result of the fact

that when one player wins, it automatically means

that the other player loses.

 Each zero-sum game has a score attached to it, and at

any given time, if the maximizer is in the lead, this

score will be in the positive range, and if the

minimizer is ahead, it will be in the negative range.

To further demonstrate the idea, consider game

where, in the event that player 2 likewise plays

optimally and chooses a course of action that results

in a maximum payout of -V, player 1 can obtain V as

the highest prize. Numerous zero-sum two-player

games, including tic-tac-toe, chess, checkers, and

others, may be played using this method. Here, with

the aid of a diagram, we'll look at a tic-tac-toe

example.

 There are two participants in the game of tic tac toe:

X and O. In this case, X is the maximizer and O is the

minimizer; each have an equal probability of winning,

losing, or drawing the game. They will pick that move

if it puts them in a position where either of them has

a strong probability of winning. Otherwise, if no

move results in a win for the current player, the

player will attempt to make a move that will result in

a draw. With the aid of the graphic below, where a

game has already been played up to a certain point

and X must now participate, let's better comprehend

this.

Figure 1 : Demonstration of tic-tac-toe using Minimax

Algorithm

As can be observed, in the first level of the game tree,

player X has a choice of 3 alternative nodes. However,

closer examination shows that if player X chooses to

play the left node, [2,0], player O will have two

alternatives for the following move, and as both

players aim to maximise them. In order to win the

game, player O will select the first node since it yields

a score of -10, whereas the other move would result

in a tie and a score of zero. Therefore, adopting this

action for player X is not ideal since it will result in

Player O receiving the most advantage and the least

amount of punishment.

 Player O will have to select one of two nodes at the

following level if player X takes the middle move,

[2,1], however, player O cannot win in either of the

two moves because the 1st node evaluates to +10 and

the 2nd one results in net zero. Player O will try to

maximize the maximum possible award for

Volume 8, Issue 6, November-December-2022 | http://ijsrcseit.com

Prof. Sumit S Shevtekar et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., November-December-2022, 8 (6) : 328-333

331

themselves and minimize the maximum possible

reward for their opponent as they play optimally as

well, and as a result, they will select the second node

to conclude the game in a tie. As a result, player X

will have the highest chance of drawing by selecting

the centre node.

 However, if player X selects the correct node, [2, 2],

then it will immediately result in player X's win with

a value of +10, in order to maximise points, the player

X will always play ideally.

2. Alpha-Beta Pruning

 To find the best move, the Minimax algorithm must

run through the whole game tree. The Minimax

method is improved by the AlphaBeta Pruning

technique, which prunes the tree nodes that have

little probability of delivering a better move and does

not assess them [7]. When pruning results in

bypassing an entire sub-branch of the game tree, it

saves a lot of time. However, the Alpha-Beta Pruning

algorithm's worst-case performance is equivalent to

that of the Minimax.

The minimax analyses every possible outcome of the

game tree and that it grows exponentially as the

depth of the tree increases. Since a more

advantageous course of action has already been

discovered, it prunes the unnecessary branches.

Alpha-beta pruning was given this name because it

does this by adding two more parameters to the

minimax algorithm, specifically alpha and beta.

When used on a typical minimax tree, it produces the

identical move that minimax would, but it also

verifies its veracity by removing branches that cannot

potentially affect the final choice. Alpha-beta pruning

has the advantage of allowing the search tree's

branches to be removed. In this manner, a deeper

search may be done while still limiting the search

time to the subtree that is "more promising."

Figure 2: Alpha-beta visualization

Alpha-beta pruning has two parameters: alpha and

beta. Largest value of maximizer at or above the stated

level is alpha, whereas the greatest value of minimizer

at or above the specified level is beta.

 Let's see how these 2 parameters are used in practise.

As we know, the score rises positively for the

maximizer and negatively for the minimizer,

therefore initially, alpha is set to minimum negative

value and beta is set to maximum positive value,

meaning that both players start with their lowest

score. We shall now examine the circumstance in

which a subtree may be removed. We can discard that

subtree if a stage is reached when the highest score of

the minimizer becomes lesser than the lowest score of

the maximizer, that will never be considered.

 3. NegaScout

 The window (α, β), is where the Alpha-Beta Pruning

algorithm starts the search, skipping any nodes that

are outside of this window. By assuming that the first

node found is the best node, the NegaScout algorithm

seeks to raise the number of cut off nodes even

further [5]. Using the exception of any nodes that

violate the aforementioned presumption, the

remaining nodes are only examined with a null

window of (m, m+1) and a full window (α, β),

research. The solver's performance is enhanced by the

null window search's increased number of cut offs.

Volume 8, Issue 6, November-December-2022 | http://ijsrcseit.com

Prof. Sumit S Shevtekar et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., November-December-2022, 8 (6) : 328-333

332

B. PSEUDOCODES

1. Minimax

As a result, we covered the minimax algorithm in the

preceding part. Here, we'll try to implement the

minimax pseudocode.

Algorithm 1: Minimax Algorithm

function miniMax(vertex,maxDepth, maxiPlayer)

 if maxDepth = 0 or vertex is a leaf node then

 return value of vertex

end

if maxiPlayer then

 score = -∞

 while every child of vertex do

score=max(score, miniMax(child,

maxDepth -1, FALSE))

 end

 return score

end

else

 score = +∞

 while every child of vertex do

score=min(score, miniMax(child, maxDepth

-1, TRUE))

 end

 return score

end

Algorithm 2: Sequential Alpha Beta Pruning

Algorithm

function alpha_beta(vertex, maxDepth, α, β,

maxiPlayer)

if maxDepth = 0 or vertex is a leaf node then

 return value of vertex

end

if maxiPlayer then

 score = -∞

 while every child of vertex do

score=max(score,

alpha_beta(child,maxDepth-1,α, β, FALSE)

α = max(α, score)

if β ≤ α then

 break

end

 end

 return score

end

else

 score = -∞

 while every child of vertex do

score=max(score,

alpha_beta(child,maxDepth-1,α, β, TRUE)

β = min(β, score)

if β ≤ α then

 break

end

 end

 return score

end

Algorithm 3: Negascout Algorithm

function NegaScout(game

Position,depth,alpha,beta)

 if depth = 0 or game is over

 return Eval(gamePosition)

end

n=beta

score=∞

Generate(gamePosition)

for i=1 to sizeof(moves) do

 Make(moves[i])

 if curr>score then

 cur = -NegaScout(gamePosition, depth-1, -n,

-alpha)

 end

 if n=beta or d<=2 then

 score=cur

 end

 else

score= -NegaScout (gamePosition, depth-1,

-beta, - cur)

 end

if (score > alpha)

 alpha = score

end

if (alpha >= beta)

 return alpha;

 end

 undo(moves[i]);

 n = alpha+1;

 return score;

end

Volume 8, Issue 6, November-December-2022 | http://ijsrcseit.com

Prof. Sumit S Shevtekar et al Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., November-December-2022, 8 (6) : 328-333

333

IV. CONCLUSION

Game theory is a plain, easily understood idea that is

also evident in everyday life. In two-player games,

the Minimax algorithm always selects the best move

for the player, supposing that the other player would

always play strategically as well. Minimax is so named

because, as can be seen, it seeks to maximise player

profit while minimising that of the opponent.

Numerous 2-player zero-sum games, including tic-

tac-toe, chess, checkers, and others, have been taken

into consideration.

We have attempted to make the method optimal by

seeking the depth iteratively with alpha-beta pruning

such that a successful move is still followed in the

event of an interruption because the minimax

algorithm is depth-first and its states expand

exponentially. Furthermore, simultaneous alpha-beta

pruning, which aims to accelerate the present alpha-

beta pruning by an average of 3.03, has recently come

up for discussion. If not, it would be necessary to

investigate each of the tree's exponential game states,

which would be incredibly expensive. Consequently,

alpha-beta pruning improves the minimax method by

preventing state exploration.

V. REFERENCES

[1]. Pranav G., Satvik M., Neeta P. “Realization of

Game Tree Search Algorithms on FPGA: A

Comparative Study”, 2019 International

Conference on Issues and Challenges in

Intelligent Computing Techniques (ICICT),

2019, pp. 1-3.

[2]. Shubhendra P. S., M. Sridevi. “Comparative

study of performance of parallel alpha Beta

Pruning for different architectures” 2019 IEEE

9th International Conference on Advanced

Computing (IACC), 2019, pp. 115-119.

[3]. Maciej Świechowski, Konrad Godlewski,

Bartosz Sawicki, Jacek Mańdziuk. “Monte Carlo

Tree Search: a review of recent modifcations

and applications” Artif Intell Rev (2022) 10462-

022-10228.

[4]. S. Ariyurek, A. Betin-Can and E. Surer,

"Enhancing the Monte Carlo Tree Search

Algorithm for Video Game Testing," 2020 IEEE

Conference on Games (CoG), 2020, pp. 25-32.

Cite this article as :

Prof. Sumit S Shevtekar, Mugdha Malpe, Mohammed

Bhaila, "Analysis of Game Tree Search Algorithms

Using Minimax Algorithm and Alpha-Beta Pruning",

International Journal of Scientific Research in

Computer Science, Engineering and Information

Technology (IJSRCSEIT), ISSN : 2456-3307, Volume 8

Issue 6, pp. 328-333, November-December 2022.

Available at doi :

https://doi.org/10.32628/CSEIT1228644

Journal URL : https://ijsrcseit.com/CSEIT1228644

