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ABSTRACT 
 

In this paper, we study two types of two dimensional line integral problems. The closed forms of the two types of line 

integrals can be determined by using a complex integral formula. In addition, two examples are proposed to do calculation 

practically. The method adopted in this study is to find solutions through manual calculations and verify the answers using 

Maple. 
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I. INTRODUCTION 

Calculus and engineering mathematics courses provide 

many methods to solve the integral problems which 

include change of variables method, integration by 

parts method, partial fractions method, trigonometric 

substitution method, etc. In this paper, we study the 

following two types of two dimensional line integrals 

which are not easy to obtain their answers using the 

methods mentioned above. 
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where ba, are real numbers, and 2
21 ],[: Rtt  is a 

piecewise smooth curve in 2R defined by 

))(),(()( tytxt  which satisfies 022  ba ,

2222 )]([)]([ batytx  , 0)]([)]([ 2222  batytx . 

The two types of line integrals can be determined by 

using a complex integral formula; these are the main 

results of this paper (i.e., Theorems 1 and 2). Adams et 

al. [1], Nyblom [2], and Oster [3] provided some 

methods to solve the integral problems. Moreover, Yu 

[4-30], Yu and Chen [31], and Yu and Sheu [32-34] 

used some techniques to solve some types of integrals, 

which including complex power series, integration 

term by term theorem, Parseval’s theorem, area mean 

value theorem, and generalized Cauchy integral 

formula. In this study, we propose some examples to 

demonstrate the manual calculations, and verify the 

results using Maple. 

 

II.  METHODS AND MATERIAL 

First, we introduce two formulas used in this paper. 

Formulas: 

Suppose that z  is a complex number, then 

1)  , for .   (3) 

And 

2)  , for .    (4) 
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To obtain the major results, two lemmas are needed 

and the first one is the complex integral formula used 

in this article. 

Lemma 1   Suppose that ,z  are complex numbers 

with 0 , then  
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where C  is a constant. 
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Lemma 2  Suppose that  , are real numbers with 

122   , then  
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Proof  Using Eq. (3) yields 
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   (by Eq. (4))                            q.e.d. 

 

III. RESULTS AND DISCUSSION 

Main Results 

In the following, we use Lemmas 1 and 2 to obtain the 

closed forms of the line integrals (1) and (2). 

Theorem 1  If ba, are real numbers, 022  ba C

is a constant, and let 2
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Theorem 2  If the assumptions are the same as 

Theorem 1 , then 
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Proof  By the equality of the imaginary parts of both 

sides of Eq. (8), the desired result holds.        q.e.d. 

 

Examples 

For the line integral problems discussed in this study, 

two examples are proposed and Theorems 1 and 2 are 

used to determine their closed forms. On the other 

hand, Maple is used to calculate the approximations of 

some line integrals and their closed forms to verify our 

answers. 

Example 1  If 1,1  ba in Theorem 1, and let 
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Using Maple to verify the correctness of Eq. (11) as 

follows: 

>evalf(int(ln(25*t^4+16*t^2+4)-

arctan((4*t^2+2)/(3*t^2)),t=1..2),18); 

4.04095054522252823 

>evalf(2*ln(468)-2*arctan(3/2)+arctan(-2/3)-arctanh(-

2/11)-ln(45)+2*arctan(2)+arctanh(-2/7)-4,18); 

4.04095054522252827 
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Example 2  In Theorem 2, if 2,3  ba , and let

2]3,1[: R be a piecewise smooth curve defined by 

),4()( ttt  , then by Theorem 2 we have 
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We also employ Maple to verify the correctness of Eq. 

(13). 

 

>evalf(int(4*arctan((8*t^2+12)/(15*t^2+5))+1/2*ln(28

9*t^4+342*t^2+169),t=1..3),18); 

13.5557804577116240 

 

>evalf(3/2*ln(26656)+10*arctan(3/5)+3*arctanh(-

15/83)-4-1/2*ln(800)-Pi+2*arctan(7)-3*arctanh(-

1/3),18); 

13.5557804577116242 

 

IV.CONCLUSION 

 
As mentioned, we mainly use a complex integral 

formula to solve two types of two dimensional line 

integrals. In fact, the applications of complex integral 

formulas are extensive, and can be used to easily solve 

many difficult problems; we endeavor to conduct 

further studies on related applications. In addition, 

Maple also plays a vital assistive role in problem 

solving. In the future, we will extend the research topic 

to other calculus and engineering mathematics 

problems and use Maple to verify our answers. These 

results will be used as teaching materials for Maple on 

education and research to enhance the connotations of 

calculus and engineering mathematics. 
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