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ABSTRACT 
 

This article uses the mathematical software Maple for the auxiliary tool to study two types of special integral 

problems. We can obtain the infinite series forms of the two types of integrals by using integration theory of 

complex variables functions. The research method adopted in this paper is to find solutions through manual 

calculations and verify our results using Maple. This method can not only let us find the calculation errors but also 

help us to revise the original thinking direction because we can verify the correctness of our ideas from the 

consistency of manual calculations and Maple calculations. Therefore, Maple can bring us inspiration and guide 

us to find the problem-solving method. 
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I. INTRODUCTION 

 

As is The computer algebra system (CAS) has been 

widely employed in mathematical and scientific 

studies. The rapid computations and the visually 

appealing graphical interface of the program render 

creative research possible. Maple possesses 

significance among mathematical calculation systems 

and can be considered a leading tool in the CAS field. 

The superiority of Maple lies in its simple instructions 

and ease of use, which enable beginners to learn the 

operating techniques in a short period. In addition, 

through the numerical and symbolic computations 

performed by Maple, the logic of thinking can be 

converted into a series of instructions. The computation 

results of Maple can be used to modify our previous 

thinking directions, thereby forming direct and 

constructive feedback that can aid in improving 

understanding of problems and cultivating research 

interests. To get a better understanding of Maple can 

use the online system of Maple, or browsing Maple’s 

website www.maplesoft.com. On the other hand, for 

the books on Maple can refer to [1-3]. 

There are many methods appeared in calculus and 

engineering mathematics courses to solve the integral 

problems, which include change of variables method, 

integration by parts method, partial fractions method, 

trigonometric substitution method, etc. In addition, 

Adams et al. [4], Nyblom [5], and Oster [6] provided 

some other methods to solve the integral problems. In 

addition, Yu [7-33], Yu and Chen [34], and Yu and 

Sheu [35-37] used some techniques, for example, 

complex power series, integration term by term 

theorem, area mean value theorem, and generalized 

Cauchy integral formula to solve some types of 

integrals. In this paper, we consider the following two 

types of special integral problems which are not easy to 

obtain their answers using the methods mentioned 

above. 
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where ,r  are real numbers, 1r , and nm,  are 

positive integers. The infinite series forms of the two 

types of integrals can be determined by using 

integration theory of complex variables functions; 

these are the major results in this paper (i.e., Theorems 
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1 and 2). On the other hand, two examples are provided 

to demonstrate the manual calculations, and we verify 

the results using Maple. This method can not only let 

us find the calculation errors but also help us to revise 

the original thinking direction because we can verify 

the correctness of our ideas from the consistency of 

manual calculations and Maple calculations. 

 

II.  METHODS AND MATERIAL 

 

First, we introduce some definitions and formulas used 

in this paper. 

Definitions: 

The complex logarithmic function zln  is defined by 

izz  lnln , where z  is a complex number,   is a 

real number, iezz  , and   . 

Formulas: 

1) Euler’s formula:  

 sincos iei  , where   is any real number. 

2) DeMoivre’s formula : 

 pipi p sincos)sin(cos  , where p  

is any integer, and   is any real number. 

To obtain the major results, a lemma is needed which is 

the complex integral formula used in this study. 

Lemma  Suppose that z  is a complex number, 1,0z , 

and nm,  are positive integers, then  
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where 1C  is a constant. 
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III. RESULTS AND DISCUSSION 

 

Main Results 

Next, we use Lemma to determine the infinite series 

forms of the integrals (1) and (2). 

Theorem 1  Let ,r  be real numbers, 1r , nm, are 

positive integers, and C  is a constant, then 
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Proof  In Eq. (3), let irez  , then 
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Using Euler’s formula, DeMoivre’s formula Euler, and 

Definitions yields 
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By the equality of real parts of both sides of Eq.(5), the 

desired result holds. 

q.e.d. 

Theorem 2  If the assumptions are the same as 

Theorem1,then 
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Proof  Using the equality of imaginary parts of both 

sides of Eq.(5) yields the desired result holds.         

q.e.d. 

 

Examples 

For the special integrals discussed in this article, we 

provide two examples and use Theorems 1 and 2 to 

obtain their infinite series forms. Moreover, Maple is 

used to calculate the approximations of some definite 

integrals and their infinite series forms to verify our 

answers. 

Example 1  Let 9,7,5  nmr in Theorem 1, then by 

Eq. (4), we have 
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Therefore, the definite integral 
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We employ Maple to verify the correctness of Eq. (8) 

below. 

>evalf(int(sin(10*theta-

7*arctan(theta/ln(5)))/((ln(5))^2+(theta)^2)^(7/2),theta

=0..Pi),23); 

0.007199362061560500110842 

>evalf(-1/5^10*sum(10^k*((ln(5))^2+Pi^2)^((k-

6)/2)/(k!*(k-6))*cos((k-6)*arctan(Pi/ln(5))),k=0..5) -

1/5^10*sum( 

10^k*((ln(5))^2+Pi^2)^((k-6)/2)/(k!*(k-6))*cos((k-

6)*arctan(Pi/ln(5))),k=7..infinity)-

10^6/(5^10*6!)*1/2*ln((ln(5))^2+Pi^2)+10^6/(5^10*6

!)*ln(ln(5))+1/5^10*sum(10^k*(ln(5))^(k-6)/(k!*(k-

6)),k=0..5)+1/5^10*sum(10^k*(ln(5))^(k-6)/(k!*(k-
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6)),k=7..infinity),23); 

0.007199362061560500110843 

Example 2  In Theorem 2, if 3,4,2  nmr , then by 

Eq. (6), we obtain 
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Thus, we obtain the following definite integral 
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Also, we use Maple to verify the correctness of Eq. 

(10). 

>evalf(int(cos(4*theta-

4*arctan(theta/ln(2)))/((ln(2))^2+(theta)^2)^2,theta=0..

Pi/3),23); 

2.0418366947648703186136 

>evalf(1/16*sum(4^k*((ln(2))^2+Pi^2/9)^((k-

3)/2)/(k!*(k-3))*sin((k-3)*arctan(Pi/(3*ln(2)))),k=0..2) 

+1/16*sum(4 

^k*((ln(2))^2+Pi^2/9)^((k-3)/2)/(k!*(k-3))*sin((k-

3)*arctan(Pi/(3*ln(2)))),k=4..infinity)+2/3*arctan(Pi/(3

*ln(2))),23); 

2.0418366947648703186136 

IV.CONCLUSION 

 
From the discussion above, we know that the 

integration theory of complex variables functions is the 

main technique to solve two types of special integral 

problems. In fact, the application of this method is 

extensive, and can be used to easily solve many 

difficult problems; we endeavor to conduct further 

studies on related applications. On the other hand, 

Maple also plays a vital assistive role in problem-

solving. In the future, we will extend the research topic 

to other calculus and engineering mathematics 

problems and solve these problems using Maple. 
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