
CSEIT17221 | Received: 05 March 2017 | Accepted: 15 March 2017 | March-April-2017 [(2)2: 56-61]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2017 IJSRCSEIT | Volume 2 | Issue 2 | ISSN : 2456-3307

56

Privacy Protected Keyword Search Method in Cloud Data
N. S. Akhil Krishnan1, A. Sundersingh2

¹PG Scholar, Department of M.Sc(Software Engineering), PSN College of Engineering & Technology, Tirunelveli,Tamilnadu, India

² Research Supervisor, Department of M.Sc(Software Engineering), PSN College of Engineering & Technology, Tirunelveli,Tamilnadu, India

ABSTRACT

Cloud data owners prefer to outsource documents in an encrypted form for privacy preserving. Therefore, it is

essential to develop efficient and reliable cipher text search techniques. In this paper, a hierarchical clustering

method is proposed to support more semantistics and meet the command for fast cipher text search with in a big data

environment. The proposed hierarchical approach clusters the documents based on the minimum relevance

threshold. The results show that with a sharp increase of documents in the data set. The search time of the proposed

method increases exponentially. Furthermore, the proposed method has advantage over the traditional method in the

rank privacy and relevance of retrieved documents.

Keywords : PrefDB, data, SQL, Query Parser, Tuples.

I. INTRODUCTION

PrefDB, a preference-aware relational system that

transparently and efficiently handles queries with

preferences. In its core, PrefDB employs a preference-

aware data model and algebra, where preferences are

treated as first-class citizens. We define a reference

using a condition on the tuples affected, a scoring

function that scores these tuples, and a confidence that

shows how confident these scores are. In our data

model, tuples carry scores with confidences. Our

algebra comprises the standard relational operators

extended to handle scores and confidences. For

example, the join operator will join two tuples and

compute a new score-confidence pair by combining the

scores and confidences that come with the two tuples.

In addition, our algebra

contains a new operator, prefer, that evaluates a

preference on a relation, i.e., given as inputs a relation

and a preference on this relation, prefer outputs the

relation with new scores and confidences. During

preference evaluation, both the conditional and the

scoring part of a preference are used. The conditional

part acts as ‘soft’ constraint that determines which

tuples are scored without disqualifying any tuples from

the query result. In this way, PrefDB separates

preference evaluation from tuple filtering. This

separation is a distinguishing feature of our work with

respect to previous works. It allows us to define the

algebraic properties of the prefer operator and build

generic query optimization and processing strategies

that are applicable regardless of the type of reference

specified in a query or the expected type of answer.

Several approaches to integrating preferences into

database queries have been proposed and can be

roughly divided into two categories. Plug-in

approaches operate on top of the database engine and

they typically translate preferences into conventional

query constructs. On the other hand, native approaches

focus on supporting more efficiently specific queries,

such as top-k or skyline queries, by injecting new

operators inside the database engine. Unfortunately,

both approaches have several limitations. In plug-in

methods, the way preferences will be used, for example

as additional query constraints or as ranking constructs,

the query execution flow as well as the expected type

of answer (e.g., top-k or skyline) are all hard-wired in

the method, which hinders application development

and maintenance. On the other hand, native methods

consider preference evaluation and filtering as one

operation. Due to this tight coupling, these methods are

also tailored to one type of query. Furthermore, they

require modifications of the database core, which may

Volume 2 | Issue 2 | | March-April-2017 | www.ijsrcseit.com

 57

not be feasible or practical in real life. Overall, both

native and plug-in approaches do not offer a holistic

solution to flexible processing of queries with

preferences.

II. THE PROPOSED SYSTEM

PrefDB is a prototype system that is based on the

preference and extended relational data and query

models that we presented earlier. Section 2 provides an

overview of its functionality and architecture and also

describes the implementation of p-relations and the

operators. Query processing in PrefDB Figure 2 depicts

the system’s architecture. Modules depicted in yellow

are provided by the native DBMS, whereas the blue-

colored ones are those developed for PrefDB. As

shown, PrefDB offers two alternative query options:

preferences can be provided along with the input query

or the system can enrich a non-preferential query with

related preferences. In the first query option,

preferences are specified in a declarative way,

additionally to the standard SQL query part. In the

second case, relevant preferences are provided by the

profile manager module, which accesses user

preferences stored in the database. Stored preferences

can be collected from user ratings or by analyzing past

queries or clickthrough data [7]. Since preference

collection is orthogonal to query processing, which is

the primary goal of PrefDB, in our implementation, we

simply store preferences specified by users through a

visual tool we have developed [7] as well as

preferences specified in past Query Parser Query +

Preferences Query Optimizer Extended Query Plan

SQL Execution Engine Database Engine Scoring,

aggregate functions Data Operators σ, π, λ, Optimized

Query Plan Profile manager Query + Preferences user

queries. For both query options, the query and the

preferences are given as input to the query parser.

Apart from the core PrefDB query processing strategies

that blend preference evaluation into query processing,

we have also implemented a set of plug-in methods,

which are described in the Appendix. Below is an

overview of the core PrefDB modules.

Figure 1. System Architecture

• The profile manager selects from the database

preferences that can be combined with the

conditions of the issued query. For this purpose, we

use the preference selection algorithm proposed in

[20]

• The query parser takes as input the query and

preferences and generates an extended query plan

that is passed to the PrefDB query optimizer.

• The query optimizer improves the input plan by

applying a set of algebraic rules. This improved

plan and a cost model for preference evaluation are

used for generating alternative plans that interleave

preference evaluation and query processing in

different ways and for picking the plan with the

cheapest estimated cost.

• The execution engine realizes the execution of the

query plan selected by the query optimizer using

one of our execution methods.

III. RELATED WORK

The concept of preference-aware query processing

appears in many applications, where there is a matter of

choice among alternatives, including query

personalization [10], [18], [20], recommendations [4]

and multi-criteria decision making [9], [13]. We

discuss prior work with respect to how preferences are

represented in the context of relational data and how

they are integrated and processed in queries. In

representing preferences, there are two approaches. In

the qualitative approach, preferences are specified

using binary predicates called preference relations [5],

[10], [18]. In quantitative approaches, preferences are

expressed as scores assigned to tuples [6], [23] be

Volume 2 | Issue 2 | | March-April-2017 | www.ijsrcseit.com

 58

specified based on any combination of scores,

confidences and context. Our framework allows us to

process in a uniform way all these different query and

preference types. In terms of preference integration and

processing, one approach is to translate preferences into

conventional queries and execute them over the DBMS

[14], [19], [20], [21], [24]. Several efficient algorithms

have been proposed for processing different types of

queries, including top-k queries [13] and skylines [9].

These algorithms as well as query translation methods

are typically implemented outside the DBMS. Thus,

they can only apply coarse grained query optimizations,

such as reducing the number of queries sent to the

DBMS. Further, as we will also demonstrate

experimentally plug-in methods do not scale well when

faced with multi-join queries or queries involving many

preferences. Native implementations modify the

database engine by adding specific physical operators

and algorithms. RankSQL [23] extends the relational

algebra with a new operator called rank that enables

pipelining and hence optimizing top-k queries. Another

example of operator is the winnow operator [10], which

selects all tuples corresponding to the Pareto optimal

set. Our approach is different from existing works in

several ways. First, existing techniques are limited to a

particular type of query. In contrast to these approaches,

we consider preference evaluation (how preferences are

evaluated on data) and selection of the preferred tuples

that will comprise the query answer as two operations.

We focus on preference evaluation as a single operator

that can be combined with other operators and we use

its algebraic properties in order to develop generic

query optimization and processing techniques. Finally,

we follow a hybrid implementation that is closer to the

database than plug-in approaches yet not purely native,

thus combining the pros of both worlds. A different

approach to flexible processing of queries with

preferences is enabled in FlexPref [22]. FlexPref allows

integrating different preference algorithms into the

database with minimal changes in the database engine

by simply defining rules that determine the most

preferred tuples. Once these rules are specified a new

operator can be used inside queries. It is worth noting

that both FlexPref and our work are motivated by the

limitations of plug-in and native approaches. FlexPref

approaches the problem from an extensibility

viewpoint. Our focus is on the problem of preference

evaluation as an operator that is separate from the

selection of preferred answers, and we study how this

operator can be integrated into query processing in an

effective yet not obtrusive to the database engine way.

IV. PROPOSED METHODOLOGY

In this paper, we first construct an extended query plan

that contains all operators that comprise a query and we

optimize it. Then, for processing the optimized query

plan, our general strategy is to blend query execution

with preference evaluation and leverage the native

query engine to process parts of the query that do not

involve a prefer operator. Given a query with

preferences, the goal of query optimization is to

minimize the cost related with preference evaluation.

Based on the algebraic properties of prefer, we apply a

set of heuristic rules aiming to minimize the number of

tuples that are given as input to the prefer operators.

We further provide a cost-based query optimization

approach. Using the output plan of the first step as a

skeleton and a cost model for preference evaluation, the

query optimizer calculates the costs of alternative plans

that interleave preference evaluation and query

processing in different ways. Two plan enumeration

methods, i.e., a dynamic programming and a greedy

algorithm are proposed. For executing an optimized

query plan with preferences, we describe an improved

version of our processing algorithm (GBU) (an earlier

version is described in. The improved algorithm uses

the native query engine in a more efficient way by

better grouping operators together and by reducing the

out-of-the-engine query processing.

Modules:

Registration & Interest Sum up

Query Formation

Query Optimization & Execution

A preferential query combines p-relations, extended

relational and prefer operators and returns a set of

tuples that satisfy the boolean query conditions along

with their score and confidence values that have been

calculated after evaluating all prefer operators on the

corresponding relations. Intuitively, the better a tuple

matches preferences and the more (or more confident)

preferences it satisfies, the higher its final score and

confidence will be, respectively. The query parser adds

a prefer operator for each preference. Finally, the query

parser checks for each preference, whether it involves

an attribute (either in the conditional or the scoring part)

that does not appear in the query and modifies project

Volume 2 | Issue 2 | | March-April-2017 | www.ijsrcseit.com

 59

operators, such that these attributes will be projected as

well.

Proportional to the number of tuples flowing through

the operators in the query plan. Assuming a fixed

position for the other operators, the goal of our query

optimizer is essentially to place the prefer operators

inside the plan, such that the number of tuples flowing

through the score tables is minimized. The execution

engine of PrefDB is responsible for processing a

preferential query and supports various algorithms.

V. EXPERIMENTAL RESULTS

The implementation results can be shown as figure

below

During Registration, each and every user will provide

their basic information for authentication. After that,

user has to provide their profile information and their

interests about their movie. Based upon their, and with

our movie datasets, we can be able to analyze their

interest about the movie and have to provide the

recommended movies to the particular user.

Volume 2 | Issue 2 | | March-April-2017 | www.ijsrcseit.com

 60

VI. CONCLUSIONS

In this project, we investigated an Efficient,

Personalized Movie Recommendations by query

optimization giving first class importance to user’s

preferences. Existing a technique uses multiple sorting

and filtering operations on result set which is heavy

weighted and time consuming. Query Reformulation is

used to modifying the Object Oriented Query with

Users Current Preference, which is extracted previously

from user’s session information with some special

operators. Here as soon as the Object Oriented query is

injected in the execution engine so no need to perform

Filtering and sorting operations. As a Separate Session

will be maintained for each individual user for

maintaining the profile, our system gives account level

security.

VII. REFERENCES

[1]. DBLP computer science bibliography.

http://dblp.uni-trier.de/.

[2]. IMDB movie database. http://www.imdb.com.

[3]. Query templates. http://tinyurl.com/8zs3e77.

[4]. G. Adomavicius and A. Tuzhilin. Toward the

next generation of recommender systems: A

survey of the state-of-the-art and possible

extensions. TKDE, 17(6):734–749, 2005.

[5]. R. Agrawal, R. Rantzau, and E. Terzi. Context-

sensitive ranking. In SIGMOD, pages 383–394,

2006.

[6]. R. Agrawal and E. L. Wimmers. A framework

for expressing and combining preferences. In

SIGMOD, pages 297–306, 2000.

[7]. A. Arvanitis and G. Koutrika. PrefDB: Bringing

preferences closer to the DBMS. In SIGMOD,

pages 665–668, 2012.

[8]. A. Arvanitis and G. Koutrika. Towards

preference-aware relational databases. In ICDE,

pages 426–437, 2012.

[9]. S. Borzs ¨ onyi, D. Kossmann, and K. Stocker.

The skyline operator. ¨ In ICDE, pages 421–430,

2001.

[10]. J. Chomicki. Preference formulas in relational

queries. TODS, 28(4):427–466, 2003.

[11]. V. Christophides, D. Plexousakis, M. Scholl, and

S. Tourtounis. On labeling schemes for the

semantic web. In WWW, pages 544–555, 2003.

[12]. W. W. Cohen, R. E. Schapire, and Y. Singer.

Learning to order things. J. Artif. Intell. Res.

(JAIR), 10:243–270, 1999.

[13]. R. Fagin, A. Lotem, and M. Naor. Optimal

aggregation algorithms for middleware. In

PODS, pages 102–113, 2001.

[14]. P. Georgiadis, I. Kapantaidakis, V.

Christophides, E. M. Nguer, and N. Spyratos.

Volume 2 | Issue 2 | | March-April-2017 | www.ijsrcseit.com

 61

Efficient rewriting algorithms for preference

queries. In ICDE, pages 1101–1110, 2008.

[15]. S. Holland, M. Ester, and W. Kießling.

Preference mining: A novel approach on mining

user preferences for personalized applications. In

PKDD, pages 204–216, 2003.

[16]. I. F. Ilyas, W. G. Aref, and A. K. Elmagarmid.

Supporting top-k join queries in relational

databases. In VLDB, pages 754–765, 2003.

[17]. T. Joachims. Optimizing search engines using

clickthrough data. In KDD, pages 133–142,

2002.

[18]. W. Kießling. Foundations of preferences in

database systems. In VLDB, pages 311–322,

2002.

[19]. W. Kießling and G. Kostler. Preference SQL -

design, implementation, experiences. In VLDB,

pages 990–1001, 2002.

[20]. G. Koutrika and Y. E. Ioannidis. Personalization

of queries in database systems. In ICDE, pages

597–608, 2004.

[21]. M. Lacroix and P. Lavency. Preferences: Putting

more knowledge into queries. In VLDB, pages

217–225, 1987.

[22]. J. Levandoski, M. Mokbel, and M. Khalefa.

FlexPref: A framework for extensible preference

evaluation in database systems. In ICDE, pages

828–839, 2010.

[23]. C. Li, K. C.-C. Chang, I. F. Ilyas, and S. Song.

RankSQL: Query algebra and optimization for

relational top-k queries. In SIGMOD, pages 131–

142, 2005.

[24]. C. Mishra and N. Koudas. Stretch 'n' shrink:

Resizing queries to user preferences. In

SIGMOD, pages 1227–1230, 2008.

[25]. P. G. Selinger, M. M. Astrahan, D. D.

Chamberlin, R. A. Lorie, and T. G. Price. Access

path selection in a relational database

management system. In SIGMOD, pages 23–34,

1979.

[26]. K. Stefanidis, E. Pitoura, and P. Vassiliadis.

Adding context to preferences. In ICDE, pages

846–855, 2007.

