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ABSTRACT 
 

Cloud data owners prefer to outsource documents in an encrypted form for privacy preserving. Therefore, it is 

essential to develop efficient and reliable cipher text search techniques. In this paper, a hierarchical clustering 

method is proposed to support more semantistics and meet the command for fast cipher text search with in a big data 

environment. The proposed hierarchical approach clusters the documents based on the minimum relevance 

threshold. The results show that with a sharp increase of documents in the data set. The search time of the proposed 

method increases exponentially. Furthermore, the proposed method has advantage over the traditional method in the 

rank privacy and relevance of retrieved documents. 
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I. INTRODUCTION 

 

PrefDB, a preference-aware relational system that 

transparently and efficiently handles queries with 

preferences. In its core, PrefDB employs a preference-

aware data model and algebra, where preferences are 

treated as first-class citizens. We define a reference 

using a condition on the tuples affected, a scoring 

function that scores these tuples, and a confidence that 

shows how confident these scores are. In our data 

model, tuples carry scores with confidences. Our 

algebra comprises the standard relational operators 

extended to handle scores and confidences. For 

example, the join operator will join two tuples and 

compute a new score-confidence pair by combining the 

scores and confidences that come with the two tuples. 

In addition, our algebra  

 

contains a new operator, prefer, that evaluates a 

preference on a relation, i.e., given as inputs a relation 

and a preference on this relation, prefer outputs the 

relation with new scores and confidences. During 

preference evaluation, both the conditional and the 

scoring part of a preference are used. The conditional 

part acts as ‘soft’ constraint that determines which 

tuples are scored without disqualifying any tuples from 

the query result. In this way, PrefDB separates 

preference evaluation from tuple filtering. This 

separation is a distinguishing feature of our work with 

respect to previous works. It allows us to define the 

algebraic properties of the prefer operator and build 

generic query optimization and processing strategies 

that are applicable regardless of the type of reference 

specified in a query or the expected type of answer. 

Several approaches to integrating preferences into 

database queries have been proposed and can be 

roughly divided into two categories. Plug-in 

approaches operate on top of the database engine and 

they typically translate preferences into conventional 

query constructs. On the other hand, native approaches 

focus on supporting more efficiently specific queries, 

such as top-k or skyline queries, by injecting new 

operators inside the database engine. Unfortunately, 

both approaches have several limitations. In plug-in 

methods, the way preferences will be used, for example 

as additional query  constraints or as ranking constructs, 

the query execution flow as well as the expected type 

of answer (e.g., top-k or skyline) are all hard-wired in 

the method, which hinders application development 

and maintenance. On the other hand, native methods 

consider preference evaluation and filtering as one 

operation. Due to this tight coupling, these methods are 

also tailored to one type of query.  Furthermore, they 

require modifications of the database core, which may 
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not be feasible or practical in real life. Overall, both 

native and plug-in approaches do not offer a holistic 

solution to flexible processing of queries with 

preferences.  

 
II. THE PROPOSED SYSTEM 

 
PrefDB is a prototype system that is based on the 

preference and extended relational data and query 

models that we presented earlier. Section 2 provides an 

overview of its functionality and architecture and also 

describes the implementation of p-relations and the 

operators. Query processing in PrefDB Figure 2 depicts 

the system’s architecture. Modules depicted in yellow 

are provided by the native DBMS, whereas the blue-

colored ones are those developed for PrefDB. As 

shown, PrefDB offers two alternative query options: 

preferences can be provided along with the input query 

or the system can enrich a non-preferential query with 

related preferences. In the first query option, 

preferences are specified in a declarative way, 

additionally to the standard SQL query part. In the 

second case, relevant preferences are provided by the 

profile manager module, which accesses user 

preferences stored in the database. Stored preferences 

can be collected from user ratings or by analyzing past 

queries or clickthrough data [7]. Since preference 

collection is orthogonal to query processing, which is 

the primary goal of PrefDB, in our implementation, we 

simply store preferences specified by users through a 

visual tool we have developed [7] as well as 

preferences specified in past Query Parser Query + 

Preferences Query Optimizer Extended Query Plan 

SQL Execution Engine Database Engine Scoring, 

aggregate functions Data Operators σ, π, λ, Optimized 

Query Plan Profile manager Query + Preferences user 

queries. For both query options, the query and the 

preferences are given as input to the query parser. 

Apart from the core PrefDB query processing strategies 

that blend preference evaluation into query processing, 

we have also implemented a set of plug-in methods, 

which are described in the Appendix. Below is an 

overview of the core PrefDB modules. 

 

 
Figure 1. System Architecture 

 

• The profile manager selects from the database 

preferences that can be combined with the 

conditions of the issued query. For this purpose, we 

use the preference selection algorithm proposed in 

[20]  

• The query parser takes as input the query and 

preferences and generates an extended query plan 

that is passed to the PrefDB query optimizer.  

• The query optimizer improves the input plan by 

applying a set of algebraic rules. This improved 

plan and a cost model for preference evaluation are 

used for generating alternative plans that interleave 

preference evaluation and query processing in 

different ways and for picking the plan with the 

cheapest estimated cost.  

• The execution engine realizes the execution of the 

query plan selected by the query optimizer using 

one of our execution methods.  

III. RELATED WORK 

 

The concept of preference-aware query processing 

appears in many applications, where there is a matter of 

choice among alternatives, including query 

personalization [10], [18], [20], recommendations [4] 

and multi-criteria decision making [9], [13]. We 

discuss prior work with respect to how preferences are 

represented in the context of relational data and how 

they are integrated and processed in queries. In 

representing preferences, there are two approaches. In 

the qualitative approach, preferences are specified 

using binary predicates called preference relations [5], 

[10], [18]. In quantitative approaches, preferences are 

expressed as scores assigned to tuples [6], [23] be 
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specified based on any combination of scores, 

confidences and context. Our framework allows us to 

process in a uniform way all these different query and 

preference types. In terms of preference integration and 

processing, one approach is to translate preferences into 

conventional queries and execute them over the DBMS 

[14], [19], [20], [21], [24]. Several efficient algorithms 

have been proposed for processing different types of 

queries, including top-k queries [13] and skylines [9]. 

These algorithms as well as query translation methods 

are typically implemented outside the DBMS. Thus, 

they can only apply coarse grained query optimizations, 

such as reducing the number of queries sent to the 

DBMS. Further, as we will also demonstrate 

experimentally plug-in methods do not scale well when 

faced with multi-join queries or queries involving many 

preferences. Native implementations modify the 

database engine by adding specific physical operators 

and algorithms. RankSQL [23] extends the relational 

algebra with a new operator called rank that enables 

pipelining and hence optimizing top-k queries. Another 

example of operator is the winnow operator [10], which 

selects all tuples corresponding to the Pareto optimal 

set. Our approach is different from existing works in 

several ways. First, existing techniques are limited to a 

particular type of query. In contrast to these approaches, 

we consider preference evaluation (how preferences are 

evaluated on data) and selection of the preferred tuples 

that will comprise the query answer as two operations. 

We focus on preference evaluation as a single operator 

that can be combined with other operators and we use 

its algebraic properties in order to develop generic 

query optimization and processing techniques. Finally, 

we follow a hybrid implementation that is closer to the 

database than plug-in approaches yet not purely native, 

thus combining the pros of both worlds. A different 

approach to flexible processing of queries with 

preferences is enabled in FlexPref [22]. FlexPref allows 

integrating different preference algorithms into the 

database with minimal changes in the database engine 

by simply defining rules that determine the most 

preferred tuples. Once these rules are specified a new 

operator can be used inside queries. It is worth noting 

that both FlexPref and our work are motivated by the 

limitations of plug-in and native approaches. FlexPref 

approaches the problem from an extensibility 

viewpoint. Our focus is on the problem of preference 

evaluation as an operator that is separate from the 

selection of preferred answers, and we study how this 

operator can be integrated into query processing in an 

effective yet not obtrusive to the database engine way. 

 

IV. PROPOSED METHODOLOGY 
 

In this paper, we first construct an extended query plan 

that contains all operators that comprise a query and we 

optimize it. Then, for processing the optimized query 

plan, our general strategy is to blend query execution 

with preference evaluation and leverage the native 

query engine to process parts of the query that do not 

involve a prefer operator. Given a query with 

preferences, the goal of query optimization is to 

minimize the cost related with preference evaluation. 

Based on the algebraic properties of prefer, we apply a 

set of heuristic rules aiming to minimize the number of 

tuples that are given as input to the prefer operators. 

We further provide a cost-based query optimization 

approach. Using the output plan of the first step as a 

skeleton and a cost model for preference evaluation, the 

query optimizer calculates the costs of alternative plans 

that interleave preference evaluation and query 

processing in different ways. Two plan enumeration 

methods, i.e., a dynamic programming and a greedy 

algorithm are proposed. For executing an optimized 

query plan with preferences, we describe an improved 

version of our processing algorithm (GBU) (an earlier 

version is described in. The improved algorithm uses 

the native query engine in a more efficient way by 

better grouping operators together and by reducing the 

out-of-the-engine query processing. 

 

Modules: 

Registration & Interest Sum up 

Query Formation 

Query Optimization & Execution 

 

A preferential query combines p-relations, extended 

relational and prefer operators and returns a set of 

tuples that satisfy the boolean query conditions along 

with their score and confidence values that have been 

calculated after evaluating all prefer operators on the 

corresponding relations. Intuitively, the better a tuple 

matches preferences and the more (or more confident) 

preferences it satisfies, the higher its final score and 

confidence will be, respectively. The query parser adds 

a prefer operator for each preference. Finally, the query 

parser checks for each preference, whether it involves 

an attribute (either in the conditional or the scoring part) 

that does not appear in the query and modifies project 
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operators, such that these attributes will be projected as 

well.  

 

Proportional to the number of tuples flowing through 

the operators in the query plan. Assuming a fixed 

position for the other operators, the goal of our query 

optimizer is essentially to place the prefer operators 

inside the plan, such that the number of tuples flowing 

through the score tables is minimized. The execution 

engine of PrefDB is responsible for processing a 

preferential query and supports various algorithms. 

  

V. EXPERIMENTAL RESULTS 
 

The implementation results can be shown as figure 

below 

 

 

During Registration, each and every user will provide 

their basic information for authentication. After that, 

user has to provide their profile information and their 

interests about their movie. Based upon their, and with 

our movie datasets, we can be able to analyze their 

interest about the movie and have to provide the 

recommended movies to the particular user. 
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VI. CONCLUSIONS 

 

In this project, we investigated an Efficient, 

Personalized Movie Recommendations by query 

optimization giving first class importance to user’s 

preferences. Existing a technique uses multiple sorting 

and filtering operations on result set which is heavy 

weighted and time consuming. Query Reformulation is 

used to modifying the Object Oriented Query with 

Users Current Preference, which is extracted previously 

from user’s session information with some special 

operators. Here as soon as the Object Oriented query is 

injected in the execution engine so no need to perform 

Filtering and sorting operations. As a Separate Session 

will be maintained for each individual user for 

maintaining the profile, our system gives account level 

security. 
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