
CSEIT1722151 | Received : 01 April 2017 | Accepted : 12 April 2017 | March-April-2017 [(2)2: 724-729]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2017 IJSRCSEIT | Volume 2 | Issue 2 | ISSN : 2456-3307

724

Novel based Intelligent Parking System
A. Vignesh1, D. Stalin David2

¹PG Scholar, Department of M.Sc(Software Engineering), PSN College of Engineering & Technology, Tirunelveli,Tamilnadu, India

² Research Supervisor, Department of M.Sc(Software Engineering), PSN College of Engineering & Technology, Tirunelveli,Tamilnadu, India

ABSTRACT

Smart parking system selects desired parking lot, the system will reconnect the driver to the subsystem in related

parking lot, the driver can complete the reservation without communicating with the central system. Therefore, the

central system no longer needs to maintain the reservation service. Data Collection and Local Presentation: The

system collects and stores the data about the performance metrics, including the status of parking space, reservation

time, parking location, driver’s identity. All data stored by the system is at least stamped with time metadata.

Furthermore, the system allows the driver to check the parking information, including the location of parking

spaces, the vacancy time of parking spaces and reservation information. In order to protect the security of the

system, we separately design a repository of sensing data and a mirror database of reservation. The repository is the

sink of the sensing data, and the mirror database is synchronized with the repository and stores the reservation

information. In this way, the drivers are only able to check and update the information in the mirror database.

Keywords : Arduino, Wi-Fi (ESP 8266), Load cell, Database System

I. INTRODUCTION

During intervals between allocation decisions made by

the center, drivers with no parking assignment have the

opportunity to change their cost or walking-distance

requirements, possibly to increase the chance to be

allocated if the parking system is highly utilized (it is

of course possible that no parking space is ever

assigned to a driver). The realization of such a ―smart

parking‖ system relies on three main requirements.

First, the allocation center has to know the status of all

parking spots, the location of all vehicles issuing

requests and traffic situations. As already mentioned,

current sensing technologies make monitoring parking

spots implementable. . A ―softer‖ scheme is to use a

red/green light system placed at each parking spot,

where red indicates that the spot is reserved and only

the vehicle assigned to it may switch it back to green (a

vehicle parked when the light is red is fined.) In what

follows, we will not deal with technical details for

meeting these three implementation requirements and

concentrate instead on the methodology that enables us

to make optimal parking space allocations and

reservations.

 Several approaches to integrating preferences into

database queries have been proposed and can be

roughly divided into two categories. Plug-in

approaches operate on top of the database engine and

they typically translate preferences into conventional

query constructs. On the other hand, native approaches

focus on supporting more efficiently specific queries,

such as top-k or skyline queries, by injecting new

operators inside the database engine. Unfortunately,

both approaches have several limitations. In plug-in

methods, the way preferences will be used, for example

as additional query constraints or as ranking constructs,

the query execution flow as well as the expected type

of answer (e.g., top-k or skyline) are all hard-wired in

the method, which hinders application development

and maintenance. On the other hand, native methods

consider preference evaluation and filtering as one

operation. Due to this tight coupling, these methods are

also tailored to one type of query. Furthermore, they

require modifications of the database core, which may

not be feasible or practical in real life. Overall, both

native and plug-in approaches do not offer a holistic

solution to flexible processing of queries with

preferences.

Volume 2 | Issue 2 | March-April-2017 | www.ijsrcseit.com 725

II. THE PROPOSED SYSTEM

PrefDB is a prototype system that is based on the

preference and extended relational data and query

models that we presented earlier. Section 2 provides an

overview of its functionality and architecture and also

describes the implementation of p-relations and the

operators. Query processing in PrefDB Figure 2 depicts

the system’s architecture. Modules depicted in yellow

are provided by the native DBMS, whereas the blue-

colored ones are those developed for PrefDB. As

shown, PrefDB offers two alternative query options:

preferences can be provided along with the input query

or the system can enrich a non-preferential query with

related preferences. The parking lot consists of a group

of parking spaces. The on-street parking can also be

considered as a virtual parking lot. The state of a

parking lot is the number of occupied spaces versus

total spaces. Every parking lot has access to the Internet

to communicate with the management system and users,

and share parking information with other parking lots.

In each parking lot, the reservation authority is

deployed for authenticating the individual user’s

identity and reservation request. In this case, the

reservation authority in the parking lot communicates

with the specific user individually. Once the

reservation order is confirmed, the reservation authority

updates reservation information to hold the related

space for the user. The sensor system deployed in

parking lot is responsible for monitoring the real-time

condition of parking lots and delivers the live

aggregated sensing information (the number of

available spaces or occupancy rate) to the smart

parking system. The sensing information is updated on

demand. Upon retrieving the parking information, the

system updates the state of the parking lot. In the first

query option, preferences are specified in a declarative

way, additionally to the standard SQL query part. In the

second case, relevant preferences are provided by the

profile manager module, which accesses user

preferences stored in the database. Stored preferences

can be collected from user ratings or by analyzing past

queries or clickthrough data [7]. Since preference

collection is orthogonal to query processing, which is

the primary goal of PrefDB, in our implementation, we

simply store preferences specified by users through a

visual tool we have developed [7] as well as

preferences specified in past Query Parser Query +

Preferences Query Optimizer Extended Query Plan

SQL Execution Engine Database Engine Scoring,

aggregate functions Data Operators σ, π, λ, Optimized

Query Plan Profile manager Query + Preferences user

queries. For both query options, the query and the

preferences are given as input to the query parser.

Apart from the core PrefDB query processing strategies

that blend preference evaluation into query processing,

we have also implemented a set of plug-in methods,

which are described in the Appendix. Below is an

overview of the core PrefDB modules

 The profile manager selects from the database

preferences that can be combined with the

conditions of the issued query. For this purpose, we

use the preference selection algorithm proposed in

[20]

 The query parser takes as input the query and

preferences and generates an extended query plan

that is passed to the PrefDB query optimizer.

 The query optimizer improves the input plan by

applying a set of algebraic rules. This improved

plan and a cost model for preference evaluation are

used for generating alternative plans that interleave

preference evaluation and query processing in

different ways and for picking the plan with the

cheapest estimated cost.

 The execution engine realizes the execution of the

query plan selected by the query optimizer using

one of our execution methods. We discuss

III. RELATED WORK

The concept of preference-aware query processing

appears in many applications, where there is a matter of

choice among alternatives, including query

personalization [10], [18], [20], recommendations [4]

and multi-criteria decision making [9], [13]. We

Volume 2 | Issue 2 | March-April-2017 | www.ijsrcseit.com 726

discuss prior work with respect to how preferences are

represented in the context of relational data and how

they are integrated and processed in queries. In

representing preferences, there are two approaches. In

the qualitative approach, preferences are specified

using binary predicates called preference relations [5],

[10], [18]. In quantitative approaches, preferences are

expressed as scores assigned to tuples [6], [23] be

specified based on any combination of scores,

confidences and context. Our framework allows us to

process in a uniform way all these different query and

preference types. In terms of preference integration and

processing, one approach is to translate preferences into

conventional queries and execute them over the DBMS

[14], [19], [20], [21], [24]. Several efficient algorithms

have been proposed for processing different types of

queries, including top-k queries [13] and skylines [9].

These algorithms as well as query translation methods

are typically implemented outside the DBMS. Thus,

they can only apply coarse grained query optimizations,

such as reducing the number of queries sent to the

DBMS. Further, as we will also demonstrate

experimentally plug-in methods do not scale well when

faced with multi-join queries or queries involving many

preferences. This system explicitly allocates and

reserves optimal parking spaces to drivers, as opposed

to simply guiding them to a space that may not be

available by the time it is reached. The allocation is

based on the user’s objective function that combines

proximity to destination and parking cost, while also

ensuring that the overall parking capacity is efficiently

utilized. Building on the results in [8], in this paper we

refine the allocation algorithm to incorporate features

making it suitable for real-world parking problems

identified in carrying out a case study based on parking

at part of the Boston University campus. Finally,

follow a hybrid implementation that is closer to the

database than plug-in approaches yet not purely native,

thus combining the pros of both worlds. A different

approach to flexible processing of queries with

preferences is enabled in FlexPref [22]. FlexPref allows

integrating different preference algorithms into the

database with minimal changes in the database engine

by simply defining rules that determine the most

preferred tuples. Once these rules are specified a new

operator can be used inside queries. It is worth noting

that both FlexPref and our work are motivated by the

limitations of plug-in and native approaches. FlexPref

approaches the problem from an extensibility

viewpoint. Our focus is on the problem of preference

evaluation as an operator that is separate from the

selection of preferred answers, and we study how this

operator can be integrated into query processing in an

effective yet not obtrusive to the database engine way.

IV. PROPOSED METHODOLOGY

In this paper, we first construct an extended query plan

that contains all operators that comprise a query and we

optimize it. Then, for processing the optimized query

plan, our general strategy is to blend query execution

with preference evaluation and leverage the native

query engine to process parts of the query that do not

involve a prefer operator. Given a query with

preferences, the goal of query optimization is to

minimize the cost related with preference evaluation.

Based on the algebraic properties of prefer, we apply a

set of heuristic rules aiming to minimize the number of

tuples that are given as input to the prefer operators.

We further provide a cost-based query optimization

approach. Using the output plan of the first step as a

skeleton and a cost model for preference evaluation, the

query optimizer calculates the costs of alternative plans

that interleave preference evaluation and query

processing in different ways. Two plan enumeration

methods, i.e., a dynamic programming and a greedy

algorithm are proposed. For executing an optimized

query plan with preferences, we describe an improved

version of our processing algorithm (GBU) (an earlier

version is described in. The improved algorithm uses

the native query engine in a more efficient way by

better grouping operators together and by reducing the

out-of-the-engine query processing.

Modules:

Registration & Interest Sum up

Query Formation

Query Optimization & Execution

A preferential query combines p-relations, extended

relational and prefer operators and returns a set of

tuples that satisfy the boolean query conditions along

with their score and confidence values that have been

calculated after evaluating all prefer operators on the

corresponding relations. Intuitively, the better a tuple

matches preferences and the more (or more confident)

preferences it satisfies, the higher its final score and

confidence will be, respectively. The query parser adds

a prefer operator for each preference. Finally, the query

parser checks for each preference, whether it involves

Volume 2 | Issue 2 | March-April-2017 | www.ijsrcseit.com 727

an attribute (either in the conditional or the scoring part)

that does not appear in the query and modifies project

operators, such that these attributes will be projected as

well as proportional to the number of tuples flowing

through the operators in the query plan. Assuming a

fixed position for the other operators, the goal of our

query optimizer is essentially to place the prefer

operators inside the plan, such that the number of

tuples flowing through the score tables is minimized.

The execution engine of PrefDB is responsible for

processing a preferential query and supports various

algorithms.

V. EXPERIMENTAL RESULTS

The implementation results can be shown as figure

below

Volume 2 | Issue 2 | March-April-2017 | www.ijsrcseit.com 728

II. CONCLUSION

In this project, In this paper we have proposed iParker,

a new smart parkingsystem which is based on MILP

model that yields optimal solution for dynamically and

statically allocating parking resources to parkers—

providing flexible reservation options. The new

concepts introduced in this paper are the combination

of real-time reservations with share-time reservations,

dynamically performing system decisions (reservation

time constraints and pricing) according to real-time

utilization information, and offering the drivers the

choice of choosingmultiple destinations and reservation

type.We also have proposed pricing policies for both

static and dynamic reservations that maximize the

profitfrom parking. Extensive simulation results

indicate that theproposed system significantly cuts the

total effective cost for all parkers by as much as 28%,

maximizes the total utilization by up to 21% and

increases the total revenue for parking management up

to 16% as compared to the non-guided parking system.

Finally we proposed a dynamic pricing scheme and by

integrating it to iParker’s model, we found by

simulations that it balances the utilization across all the

parking resources and thus assist in eliminating the

overall traffic congestion caused by parking. Currently,

the research focuses on a new parking sensing

infrastructure and an indoor navigation service for car

parking. In the future, we aim to evaluate our system

using real-time data and greater number of resources

and destinations. In addition, a scalability analysis is to

be performed to examine the efficiency of the proposed

scalability techniques.

III. REFERENCES

[1]. R. E. Knack, "Pay as you park," Planning, vol.

71, no. 5, pp. 4–8, May 2005.

[2]. National Travel Survey England, Department for

Transport, London, U.K., Sep. 2, 2015. Online].

Available:

https://www.gov.uk/government/uploads/system/

uploads/attachment_data/file/457752/nts2014-

01.pdf.

[3]. D. C. Shoup, "Cruising for parking," Transp.

Policy, vol. 13, no. 6,pp. 479–486, Nov. 2006.

[4]. A. le Fauconnier and E. Gantelet, "The time

looking for a parking space: Strategies,

associated nuisances and stakes of parking

management in france," in Proc. ETC, Sep. 2006,

pp. 1–7.

[5]. IBM Global Parking Survey: Drivers Share

Worldwide Parking Woes,IBM, Armonk, NY,

USA, Sep. 28, 2011. Online]. Available:

https://www-

03.ibm.com/press/us/en/pressrelease/35515.wss.

[6]. D. C. Shoup, "The high cost of free parking," J.

Plann. Educ. Res., vol. 17,no. 1, pp. 3–20, Fall

1997.

[7]. K. Mouskos, J. Tvantzis, D. Bernstein, and A.

Sansil, "Mathematical formulation of a

deterministic Parking Reservation System (PRS)

with fixed costs," in Proc. 10th MELECON,

2000, vol. 2, pp. 648–651.

[8]. Y. Geng and C. Cassandras, "New smart parking

system based on resource allocation and

reservations," IEEE Trans. Intell. Transp. Syst.,

vol. 14, no. 3, pp. 1129–1139, Sep. 2013.

[9]. SFpark, 2015. Accessed on: Feb. 30, 2015.

Online]. Available: http://sfpark.org/.

[10]. Y. Ji, W. Guo, P. Blythe, D. Tang, and W. Wang,

"Understanding drivers’perspective on parking

guidance information," IET Intell. Transp. Syst.,

vol. 8, no. 4, pp. 398–406, Jun. 2014.

[11]. Y. Asakura and M. Kashiwadani, "Effects of

parking availability information on system

performance: A simulation model approach," in

Proc. IEEE Veh. Navig. Inf. Syst. Conf., 1994,

pp. 251–254.

[12]. T. Rajabioun and P. Ioannou, "On-street and off-

street parking availability prediction using

multivariate spatiotemporal models," IEEE

Trans. Intell. Transp. Syst., vol. 16, no. 5, pp.

2913–2924, Oct. 2015.

Volume 2 | Issue 2 | March-April-2017 | www.ijsrcseit.com 729

[13]. K. C. Mouskos, "Technical solutions to

overcrowded park and ride facilities," City Univ.

New York, New York, NY, USA, Tech. Rep.

FHWANJ-2007-011, 2007.

[14]. M. Idris, Y. Leng, E. Tamil, N. Noor, and Z.

Razak, "Park system: A review of smart parking

system and its technology," Inf. Technol. J., vol.

8, no. 2, pp. 101–113, Mar. 2009.

[15]. G. Revathi and V. Dhulipala, "Smart parking

systems and sensors: A survey," in Proc. ICCCA,

Feb. 2012, pp. 1–5.

[16]. R. Ranjini and D. Manivannan, "A comparative

review on car parking technologies," Int. J. Eng.

Technol., vol. 5, no. 2, pp. 1763–1767, Apr./May

2013.

[17]. P. Trusiewicz and J. Legierski, "Parking

reservation—Application dedicated for car users

based on telecommunications APIs," in Proc.

FedCSIS, Sep. 2013, pp. 865–869.

[18]. K. Inaba, M. Shibui, T. Naganawa, M. Ogiwara,

and N. Yoshikai, "Intelligent parking reservation

service on the internet," in Proc.

