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ABSTRACT 
 

Smart parking system selects desired parking lot, the system will reconnect the driver to the subsystem in related 

parking lot, the driver can complete the reservation without communicating with the central system. Therefore, the 

central system no longer needs to maintain the reservation service. Data Collection and Local Presentation: The 

system collects and stores the data about the performance metrics, including the status of parking space, reservation 

time, parking location, driver’s identity. All data stored by the system is at least stamped with time metadata. 

Furthermore, the system allows the driver to check the parking information, including the location of parking 

spaces, the vacancy time of parking spaces and reservation information. In order to protect the security of the 

system, we separately design a repository of sensing data and a mirror database of reservation. The repository is the 

sink of the sensing data, and the mirror database is synchronized with the repository and stores the reservation 

information. In this way, the drivers are only able to check and update the information in the mirror database.   
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I. INTRODUCTION 

 
During intervals between allocation decisions made by 

the center, drivers with no parking assignment have the 

opportunity to change their cost or walking-distance 

requirements, possibly to increase the chance to be 

allocated if the parking system is highly utilized (it is 

of course possible that no parking space is ever 

assigned to a driver). The realization of such a ―smart 

parking‖ system relies on three main requirements. 

First, the allocation center has to know the status of all 

parking spots, the location of all vehicles issuing 

requests and traffic situations. As already mentioned, 

current sensing technologies make monitoring parking 

spots implementable. . A ―softer‖ scheme is to use a 

red/green light system placed at each parking spot, 

where red indicates that the spot is reserved and only 

the vehicle assigned to it may switch it back to green (a 

vehicle parked when the light is red is fined.) In what 

follows, we will not deal with technical details for 

meeting these three implementation requirements and 

concentrate instead on the methodology that enables us 

to make optimal parking space allocations and 

reservations. 

 Several approaches to integrating preferences into 

database queries have been proposed and can be 

roughly divided into two categories. Plug-in 

approaches operate on top of the database engine and 

they typically translate preferences into conventional 

query constructs. On the other hand, native approaches 

focus on supporting more efficiently specific queries, 

such as top-k or skyline queries, by injecting new 

operators inside the database engine. Unfortunately, 

both approaches have several limitations. In plug-in 

methods, the way preferences will be used, for example 

as additional query  constraints or as ranking constructs, 

the query execution flow as well as the expected type 

of answer (e.g., top-k or skyline) are all hard-wired in 

the method, which hinders application development 

and maintenance. On the other hand, native methods 

consider preference evaluation and filtering as one 

operation. Due to this tight coupling, these methods are 

also tailored to one type of query.  Furthermore, they 

require modifications of the database core, which may 

not be feasible or practical in real life. Overall, both 

native and plug-in approaches do not offer a holistic 

solution to flexible processing of queries with 

preferences.  
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II. THE PROPOSED SYSTEM 
 
PrefDB is a prototype system that is based on the 

preference and extended relational data and query 

models that we presented earlier. Section 2 provides an 

overview of its functionality and architecture and also 

describes the implementation of p-relations and the 

operators. Query processing in PrefDB Figure 2 depicts 

the system’s architecture. Modules depicted in yellow 

are provided by the native DBMS, whereas the blue-

colored ones are those developed for PrefDB. As 

shown, PrefDB offers two alternative query options: 

preferences can be provided along with the input query 

or the system can enrich a non-preferential query with 

related preferences. The parking lot consists of a group 

of parking spaces. The on-street parking can also be 

considered as a virtual parking lot. The state of a 

parking lot is the number of occupied spaces versus 

total spaces. Every parking lot has access to the Internet 

to communicate with the management system and users, 

and share parking information with other parking lots. 

In each parking lot, the reservation authority is 

deployed for authenticating the individual user’s 

identity and reservation request. In this case, the 

reservation authority in the parking lot communicates 

with the specific user individually. Once the 

reservation order is confirmed, the reservation authority 

updates reservation information to hold the related 

space for the user. The sensor system deployed in 

parking lot is responsible for monitoring the real-time 

condition of parking lots and delivers the live 

aggregated sensing information (the number of 

available spaces or occupancy rate) to the smart 

parking system. The sensing information is updated on 

demand. Upon retrieving the parking information, the 

system updates the state of the parking lot. In the first 

query option, preferences are specified in a declarative 

way, additionally to the standard SQL query part. In the 

second case, relevant preferences are provided by the 

profile manager module, which accesses user 

preferences stored in the database. Stored preferences 

can be collected from user ratings or by analyzing past 

queries or clickthrough data [7]. Since preference 

collection is orthogonal to query processing, which is 

the primary goal of PrefDB, in our implementation, we 

simply store preferences specified by users through a 

visual tool we have developed [7] as well as 

preferences specified in past Query Parser Query + 

Preferences Query Optimizer Extended Query Plan 

SQL Execution Engine Database Engine Scoring, 

aggregate functions Data Operators σ, π, λ, Optimized 

Query Plan Profile manager Query + Preferences  user 

queries. For both query options, the query and the 

preferences are given as input to the query parser. 

Apart from the core PrefDB query processing strategies 

that blend preference evaluation into query processing, 

we have also implemented a set of plug-in methods, 

which are described in the Appendix. Below is an 

overview of the core PrefDB modules 

 

 
 

 The profile manager selects from the database 

preferences that can be combined with the 

conditions of the issued query. For this purpose, we 

use the preference selection algorithm proposed in 

[20]  

 The query parser takes as input the query and 

preferences and generates an extended query plan 

that is passed to the PrefDB query optimizer.  

 The query optimizer improves the input plan by 

applying a set of algebraic rules. This improved 

plan and a cost model for preference evaluation are 

used for generating alternative plans that interleave 

preference evaluation and query processing in 

different ways and for picking the plan with the 

cheapest estimated cost.  

 The execution engine realizes the execution of the 

query plan selected by the query optimizer using 

one of our execution methods. We discuss  

III.     RELATED WORK 
 

The concept of preference-aware query processing 

appears in many applications, where there is a matter of 

choice among alternatives, including query 

personalization [10], [18], [20], recommendations [4] 

and multi-criteria decision making [9], [13]. We 
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discuss prior work with respect to how preferences are 

represented in the context of relational data and how 

they are integrated and processed in queries. In 

representing preferences, there are two approaches. In 

the qualitative approach, preferences are specified 

using binary predicates called preference relations [5], 

[10], [18]. In quantitative approaches, preferences are 

expressed as scores assigned to tuples [6], [23] be 

specified based on any combination of scores, 

confidences and context. Our framework allows us to 

process in a uniform way all these different query and 

preference types. In terms of preference integration and 

processing, one approach is to translate preferences into 

conventional queries and execute them over the DBMS 

[14], [19], [20], [21], [24]. Several efficient algorithms 

have been proposed for processing different types of 

queries, including top-k queries [13] and skylines [9]. 

These algorithms as well as query translation methods 

are typically implemented outside the DBMS. Thus, 

they can only apply coarse grained query optimizations, 

such as reducing the number of queries sent to the 

DBMS. Further, as we will also demonstrate 

experimentally plug-in methods do not scale well when 

faced with multi-join queries or queries involving many 

preferences. This system explicitly allocates and 

reserves optimal parking spaces to drivers, as opposed 

to simply guiding them to a space that may not be 

available by the time it is reached. The allocation is 

based on the user’s objective function that combines 

proximity to destination and parking cost, while also 

ensuring that the overall parking capacity is efficiently 

utilized. Building on the results in [8], in this paper we 

refine the allocation algorithm to incorporate features 

making it suitable for real-world parking problems 

identified in carrying out a case study based on parking 

at part of the Boston University campus.  Finally, 

follow a hybrid implementation that is closer to the 

database than plug-in approaches yet not purely native, 

thus combining the pros of both worlds. A different 

approach to flexible processing of queries with 

preferences is enabled in FlexPref [22]. FlexPref allows 

integrating different preference algorithms into the 

database with minimal changes in the database engine 

by simply defining rules that determine the most 

preferred tuples. Once these rules are specified a new 

operator can be used inside queries. It is worth noting 

that both FlexPref and our work are motivated by the 

limitations of plug-in and native approaches. FlexPref 

approaches the problem from an extensibility 

viewpoint. Our focus is on the problem of preference 

evaluation as an operator that is separate from the 

selection of preferred answers, and we study how this 

operator can be integrated into query processing in an 

effective yet not obtrusive to the database engine way. 

 

IV.   PROPOSED METHODOLOGY 
 

In this paper, we first construct an extended query plan 

that contains all operators that comprise a query and we 

optimize it. Then, for processing the optimized query 

plan, our general strategy is to blend query execution 

with preference evaluation and leverage the native 

query engine to process parts of the query that do not 

involve a prefer operator. Given a query with 

preferences, the goal of query optimization is to 

minimize the cost related with preference evaluation. 

Based on the algebraic properties of prefer, we apply a 

set of heuristic rules aiming to minimize the number of 

tuples that are given as input to the prefer operators. 

We further provide a cost-based query optimization 

approach. Using the output plan of the first step as a 

skeleton and a cost model for preference evaluation, the 

query optimizer calculates the costs of alternative plans 

that interleave preference evaluation and query 

processing in different ways. Two plan enumeration 

methods, i.e., a dynamic programming and a greedy 

algorithm are proposed. For executing an optimized 

query plan with preferences, we describe an improved 

version of our processing algorithm (GBU) (an earlier 

version is described in. The improved algorithm uses 

the native query engine in a more efficient way by 

better grouping operators together and by reducing the 

out-of-the-engine query processing. 

 

Modules: 

Registration & Interest Sum up 

Query Formation 

Query Optimization & Execution 

 

A preferential query combines p-relations, extended 

relational and prefer operators and returns a set of 

tuples that satisfy the boolean query conditions along 

with their score and confidence values that have been 

calculated after evaluating all prefer operators on the 

corresponding relations. Intuitively, the better a tuple 

matches preferences and the more (or more confident) 

preferences it satisfies, the higher its final score and 

confidence will be, respectively. The query parser adds 

a prefer operator for each preference. Finally, the query 

parser checks for each preference, whether it involves 
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an attribute (either in the conditional or the scoring part) 

that does not appear in the query and modifies project 

operators, such that these attributes will be projected as 

well as proportional to the number of tuples flowing 

through the operators in the query plan. Assuming a 

fixed position for the other operators, the goal of our 

query optimizer is essentially to place the prefer 

operators inside the plan, such that the number of 

tuples flowing through the score tables is minimized. 

The execution engine of PrefDB is responsible for 

processing a preferential query and supports various 

algorithms. 

  

V. EXPERIMENTAL RESULTS 
 

The implementation results can be shown as figure 

below 
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II. CONCLUSION 

 

In this project, In this paper we have proposed iParker, 

a new smart parkingsystem which is based on MILP 

model that yields optimal solution for dynamically and 

statically allocating parking resources to parkers—

providing flexible reservation options. The new 

concepts introduced in this paper are the combination 

of real-time reservations with share-time reservations, 

dynamically performing system decisions (reservation 

time constraints and pricing) according to real-time 

utilization information, and offering the drivers the 

choice of choosingmultiple destinations and reservation 

type.We also have proposed pricing policies for both 

static and dynamic reservations that maximize the 

profitfrom parking. Extensive simulation results 

indicate that theproposed system significantly cuts the 

total effective cost for all parkers by as much as 28%, 

maximizes the total utilization by up to 21% and 

increases the total revenue for parking management up 

to 16% as compared to the non-guided parking system. 

Finally we proposed a dynamic pricing scheme and by 

integrating it to iParker’s model, we found by 

simulations that it balances the utilization across all the 

parking resources and thus assist in eliminating the 

overall traffic congestion caused by parking. Currently, 

the research focuses on a new parking sensing 

infrastructure and an indoor navigation service for car 

parking. In the future, we aim to evaluate our system 

using real-time data and greater number of resources 

and destinations. In addition, a scalability analysis is to 

be performed to examine the efficiency of the proposed 

scalability techniques. 
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