
CSEIT1722182 | Received : 22 March 2017 | Accepted: 31 March 2017 | March-April-2017 [(2)2: 517-523]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2017 IJSRCSEIT | Volume 2 | Issue 2 | ISSN : 2456-3307

517

An Efficient Resource Aware Scheduling Algorithm for
Mapreduce Clusters

Sharmilarani D, Vinothini K, Ramya V, Shobika R

Department of Computer Science Engineering, Sri Krishna Institute of Technology, Coimbatore, TamilNadu, India

ABSTRACT
MapReduce has become a popular model for data-intensive computation in recent years. The schedulers are critical

in enhancing the performance of MapReduce/Hadoop in presence of multiple jobs with different characteristics and

performance goals. The propose improve the resource aware scheduling technique for Hadoop map-reduce multiple

jobs running that aims to improving resource utilization across multiple virtual machines while observing

completion time goals. The propose algorithm influences job profiling information to dynamically adjust the number

of slots allocation based on job profile and resource utilization on each machine, as well as workload placement

across them, to maximize the resource utilization of the cluster. This single node experimental result show the

resource aware scheduling that improves job running time and reduce the resource utilization without introducing

stragglers.

Keywords : Hadoop, Map-Reduce, Resource Aware Scheduling Profiling

I. INTRODUCTION

AIS

MapReduce is a processing technique and a program

model for distributed computing based on java. The

MapReduce algorithm contains two important tasks,

namely Map and Reduce. Map takes a set of data and

converts it into another set of data, where individual

elements are broken down into tuples (key/value pairs).

Secondly, reduce task, which takes the output from a

map as an input and combines those data tuples into a

smaller set of tuples. As the sequence of the name

MapReduce implies, the reduce task is always

performed after the map job. located along coast lines

or, when out of range of terrestrial networks, through a

growing number of satellites that are fitted with special

AIS receivers which are capable of deconflicting a

large number of signatures. MapReduce is that it is

easy to scale data processing over multiple computing

nodes. Under the MapReduce model, the data

processing primitives are called mappers and reducers.

Decomposing a data processing application into

mappers and reducers is sometimes nontrivial. But,

once we write an application in the MapReduce form,

scaling the application to run over hundreds, thousands,

or even tens of thousands of machines in a cluster is

merely a configuration change. This simple scalability

is what has attracted many programmers to use the

MapReduce model.

II. METHODS AND MATERIAL

1. Ease of Use

A. MAP-REDUCE Map stage

The map or mapper’s job is to process the input data.

Generally, the input data is in the form of file or

directory and is stored in the Hadoop file system

(HDFS). The input file is passed to the mapper

function line by line. The mapper processes the data

and creates several small chunks of data. The

MapReduce framework operates on key-value pairs,

that is, the framework views the input to the job as a set

of key-value pairs and produces a set of key-value pair

as the output of the job, conceivably of different types.

Volume 2 | Issue 2 | March-April-2017 | www.ijsrcseit.com 518

Figure 1. Map-Reduce work flow

The key and value classes have to be serializable by the

framework and hence, it is required to implement the

Writable interface. Additionally, the key classes have

to implement the Writable Comparable interface to

facilitate sorting by the framework.

Reduce stage: This stage is the combination of the

Shuffle stage and the Reduce stage. The Reducer’s job

is to process the data that comes from the mapper.

After processing, it produces a new set of output, which

will be stored in the HDFS.

B. HDFS File System

Hadoop File System was developed using distributed

file system design. It is run on commodity hardware.

Unlike other distributed systems, HDFS is highly fault

tolerant and designed using low-cost hardware.

Figure 3. HDFS follows the master-slave architecture

HDFS holds very large amount of data and provides

easier access. To store such huge data, the files are

stored across multiple machines. These files are stored

in redundant fashion to rescue the system from possible

data losses in case of failure. HDFS also makes

applications available to parallel processing.

C. Hadoop MRv1

Apache Hadoop 1.x and its processing framework,

MRv1 (Classic), so that we can get a clear picture of

the differences in Apache Hadoop 2.x MRv2 (YARN)

in terms of architecture, components, and processing

framework. In Hadoop 1, a single Namenode managed

the entire namespace for a Hadoop cluster. With HDFS

federation, multiple Namenode servers manage

namespaces and this allows for horizontal scaling,

performance improvements, and multiple namespaces.

The implementation of HDFS federation allows

existing Namenode configurations to run without

changes. For Hadoop administrators, moving to HDFS

federation requires formatting Namenodes, updating to

use the latest Hadoop cluster software, and adding

additional Namenodes to the cluster.

Figure 2. Hadoop MRv1 architecture diagram

Apache Hadoop is a scalable, fault-tolerant distributed

system for data storage and processing. The core

programming model in Hadoop is MapReduce.

2. Hybrid Job-Driven Scheduling

The cost-efficient for a tenant with a limited budget to

establish a virtual MapReduce cluster by renting

multiple virtual private servers (VPSs) from a VPS

provider. To provide an appropriate scheduling scheme

for this type of computing environment, the existing

paper a hybrid job-driven scheduling scheme (JoSS for

short) are used. JoSS provides not only job level

scheduling, but also map-task level scheduling and

reduce-task level scheduling. JoSS classifies

MapReduce jobs based on job scale and job type and

designs an appropriate scheduling policy to schedule

each class of jobs. The goal is to improve data locality

for both map tasks and reduce tasks, avoid job

starvation, and improve job execution performance.

Two variations of JoSS are further introduced to

Volume 2 | Issue 2 | March-April-2017 | www.ijsrcseit.com 519

separately achieve a better map-data locality and a

faster task assignment.

In order to provide an appropriate scheduling scheme

for a tenant to achieve a high map-and-reduce data

locality and improve job performance in his/her virtual

MapReduce cluster, in this paper we propose a hybrid

job-driven scheduling scheme (JoSS for short) by

providing scheduling in three levels: job, map task, and

reduce task. JoSS classifies MapReduce jobs into either

large or small jobs based on each job’s input size to the

average datacenter scale of the virtual MapReduce

cluster, and further classifies small MapReduce jobs

into either map-heavy or reduce-heavy based on the

ratio between each job reduce-input size and the job’s

map-input size. Then JoSS uses a particular scheduling

policy to schedule each class of jobs such that the

corresponding network traffic generated during job

execution (especially for inter-datacenter traffic) can be

reduced, and the corresponding job performance can be

improved. In addition, we propose two variations of

JoSS, named JoSS-T and JoSS-J, to guarantee a fast

task assignment and to further increase the VPS-

locality, respectively.

D. State of the Art JoSS schduling Algorithms

Job Classification: Before introducing the algorithm of

JoSS, first describe how JoSS classifies jobs and

schedules each class of jobs. Let Sreduce and Smap be

the total reduceinput size and the total map-input size

of J, respectively. Based on the ratio of Sreduce over

Smap, J can be classified into either a reduce heavy job

or a map-heavy job. If J satisfies Eq. (1), implying that

the network overhead is dominated by J’s reduce-input

data, then J is classified as a reduce-heavy job (RH job

for short). Otherwise, J is classified as a map-heavy job

(MH job for short). Note that td is a threshold to

determine the classification, td 0:

Scheduling Policies: JoSS utilizes the following three

scheduling policies

Policy B : This policy is designed for a small MH job.

If J is a small MH job, it would be better that each

mapper of J is close to its input block, and each reducer

of J is close to most mappers of J. Hence, policy B

works as follows: It schedules J’s map tasks based on

the number of unique input blocks of J held by each

datacenter. If a datacenter holds more unique blocks of

J, more map tasks of J will be scheduled to the VPSs at

this datacenter. The purpose is allowing each mapper of

J to retrieve its input block from its local datacenter. In

addition, to make J’s reducers close to most J’s

mappers, policy B schedules all reduce tasks of J to the

datacenter that holds the maximum number of J’s

unique blocks.

Selecting the Best Threshold: If J is classified as a RH

job, policy A will be used to schedule J. The worst case

for J’s mappers is that all of them need to retrieve their

input blocks from other datacenters. However, because

of policy A, J’s reducers can completely retrieve their

Volume 2 | Issue 2 | March-April-2017 | www.ijsrcseit.com 520

input from their local datacenters. Hence, the worst-

case inter-datacenter traffic for this classification,

denoted by TR1, is

E. Disadvantage of Hybrid Job-Driven Scheduling

JOSS, jobs are still forced to wait significantly when

the MapReduce system assigns equal sharing of

resources due to dependencies between Map, Shuffle,

Sort, Reduce phases. JOSS response time is still longer

than necessary due to dependencies between the

Map/Shuffle/Sort/Reduce phases. Joss Task assignment

problem into a Linear Sum Assignment Problem so as

to find the optimal assignment so it will take long time

for job assign.

III. RESULTS AND DISCUSSION

1. Proposed Framework

In our framework, each Task Tracker node monitors

resources such as CPU utilization, disk channel IO in

bytes/s, and the number of page faults per unit time for

the memory subsystem. Although we anticipate that

other metrics will prove useful, we propose these as the

basic three resources that must be tracked at all times to

improve the load balancing on cluster machines. In

particular, disk channel loading can significantly

impact the data loading and writing portion of Map and

Reduce tasks, more so than the amount of free space

available. Likewise, the inherent opacity of a machine’s

virtual memory management state means that

monitoring page faults and virtual memory-induced

disk thrashing is a more useful indicator of machine

load than simply tracking free memory. Instead of

having a fixed number of available computation slots

configured on each Task Tracker node, we compute

this number dynamically using the resource metrics

obtained from each node. In one possible heuristic, we

set the overall resource availability of a machine to be

the minimum availability across all resource metrics. In

a cluster that is not running at maximum utilization at

all times, we expect this to improve job response times

significantly as no machine is running tasks in a

manner that runs into a resource bottleneck. the fixed

maximum number of compute slots per node, viewing

it as a resource allocation decision made by the cluster

administrators at configuration time. Instead, we decide

the order in which free Task Tracker slots are

advertised according to their resource availability. As

Task Tracker slots become free, they are buffered for

some small-time period (say, 2s) and advertised in a

block. Task Tracker slots with higher resource

availability are presented first for scheduling tasks on.

In an environment where even short jobs take a

relatively long time to complete, this will present

significant performance gains. Instead of scheduling a

task onto the next available free slot (which happens to

be a relatively resourcedeficient machine at this point),

job response time would improve by scheduling it onto

a resource-rich machine, even if such a node takes a

longer time to become available. Buffering the

advertisement of free slots allows for this scheduling

allocation. The output of the resource aware algorithm

process F. Map /Reduce Programming model

MapReduce is a popular programming model for

processing large data sets, initially proposed by

Google. Now it has been a de facto standard for large

scale data processing on the cloud. Hadoop is an open-

source java implementation of MapReduce. When a

user submits jobs to the Hadoop cluster, Hadoop

system breaks each job into multiple map tasks and

reduce tasks. Each map task processes (i.e. scans and

Volume 2 | Issue 2 | March-April-2017 | www.ijsrcseit.com 521

records) a data block and produces intermediate results

in the form of key-value pairs. Generally, the number

of map tasks for a job is determined by input data.

There is one map task per data block. The execution

time for a map task is determined by the data size of an

input block. The reduce tasks consists of

shuffle/sort/reduce phases. In the shuffle phase, the

reduce tasks fetch the intermediate outputs from each

map task. In the sort/reduce phase, the reduce tasks sort

intermediate data and then aggregate the intermediate

values for each key to produce the final output. The

number of reduce tasks for a job is not determined,

which depends on the intermediate map outputs.

H. Task Scheduler

Task Scheduler is responsible for enforcing the

placement decisions, and for moving the system

smoothly between a placement decision made in the

last cycle to a new decision produced in the most recent

cycle. The Task Scheduler schedules tasks according to

the placement decision made by the Placement

Controller. Whenever a task completes, it is the

responsibility of the Task Scheduler to select a new

task to execute in the freed slot, by providing a task of

the appropriate type from the appropriate job to the

given Task Tracker. The placement algorithm generates

new placements, but these are not immediately

enforced as they may overload the system due to tasks

still running from the previous control cycle. The Task

Scheduler component takes care of transitioning

without overloading any Task Trackers in the system

by picking jobs to assign to the Task Tracker that do

not exceed its current capacity, sorted by lowest utility

first. For instance, a Task Tracker that is running 2 map

tasks of job A may have a different assignment for the

next cycle, say, 4 map tasks of job B. Instead of

starting the new tasks right away while the previous

ones are still running, new tasks will only start running

as previous tasks complete and enough resources are

freed.

I. Job Profiles

The proposed job scheduling technique relies on the

use of job profiles containing information about the

resource consumption for each job. Profiling is one

technique that has been successfully used in the past for

MapReduce clusters. Its suitability in these clusters

stems from the fact that in most production

environments jobs are ran periodically on data

corresponding to different time windows. V

2. Resource Aware Scheduling Algorithm

The job given a placement matrix, it defines a utility

function that combines the number of map and reduce

slots allocated to the job with its completion time goal

and job characteristics. Below we provide a description

of this function. Given placement matrices P
M

and P
R
, it

can define the number of map and reduce slots

allocated to a job j

The intuition behind it is that reduce tasks should start

at the earliest possible time, so the shuffle sub-phase of

the job (reducers pulling data produced by map tasks)

can be fully pipelined with execution of map tasks.

J. Map /Reduce Programming Model

Given an application placement matrix P, a utility value

can be calculated for each job in the system. The

performance of the system can then be measured as an

ordered vector of job utility values, U. The objective of

Volume 2 | Issue 2 | March-April-2017 | www.ijsrcseit.com 522

RAS is to find a new placement P of jobs on Task

Trackers that maximizes the global objective of the

system, U(P), which is expressed as follows:

The proposed algorithm consists of two major steps:

placing reduce tasks and placing map tasks. Reduce

tasks are placed first to allow them to be evenly

distributed across Task Trackers. By doing this we

allow reduce tasks to better multiplex network

resources when pulling intermediate data and also

enable better storage usage. The placement algorithm

distributes reduce tasks evenly across Task Trackers

while avoiding collocating any two reduce tasks. If this

is not feasible due to the total number of tasks it then

gives preference to avoiding collocating reduce tasks

from the same job. Recall that in contrast to other

existing schedulers, RAS dynamically adjusts the

number of map and reduce tasks allocated per Task

Tracker while respecting its resource constraints.

Notice also that when reduce tasks are placed first, they

start running in shuffle phase. demand of resources is

directly proportional to the number of map tasks placed

for the same job. Therefore, in the absence of map tasks

for the same job, a reduce task in shuffle phase only

consumes memory. The second step is placing map

tasks. This stage of the algorithm is utility-driven and

seeks to produce a placement matrix that balances

satisfaction across jobs while treating all jobs fairly.

This is achieved by maximizing the lowest utility value

in the system. This part of the algorithm executes a

series of rounds, each of which tries to improve the

lowest utility of the system. In each round, the

algorithm removes allocated tasks from jobs with the

highest utility, and allocates more tasks to the jobs with

the lowest utility. For the sake of fairness, a task gets

de-allocated only if the utility of its corresponding job

remains higher than the lowest utility of any other job

in the system. This results in increasing the lowest

utility value across

3. Advantage of Traffic Knowledge

Balancing different kinds of workload in Task Tracker

to increase the resource utilization of both I/O bound

and CPU bound jobs. The resource aware scheduling

algorithm that is said to improve the job execution

without introducing stragglers. The resource aware

scheduling algorithm for this and show that produces

up to 18% improvement in resource utilization while

allowing jobs to complete up to 1.3 times faster than

current Hadoop schedulers. The resource aware

priorities can accommodate multiple tasks' lengths, job

sizes, and jobs' waiting time in this environment while

reducing average response time. The resource aware

scheduler based on dynamic priority in order to reduce

the delay for variable length concurrent jobs, and relax

the order of jobs to maintain data locality.

4. Implementation

Hadoop is a framework written in Java for running

applications on large clusters of commodity hardware

and incorporates features similar to those of the Google

File System (GFS) and of the MapReduce computing

paradigm. Hadoop’s HDFS is a highly fault-tolerant

distributed file system and, like Hadoop in general,

designed to be deployed on low-cost hardware. It

provides high throughput access to application data and

is suitable for applications that have large data sets.

K. Word Count Job Running

The size of intermediate data has a big impact on

performance of Hadoop. Three typical built-in

benchmark applications in Hadoop are used in these

experiments: Word Count without Combiner, Sort and

Word-Count with combiner (WCC). These three

benchmarks represent different relations between

intermediate data and input data. Word Count without

combiner, Sort, and Word-Count with combiner

represent the cases where the size of intermediate data

is larger than, equal to and smaller than the size of

input data, respectively.

Volume 2 | Issue 2 | March-April-2017 | www.ijsrcseit.com 523

Figure 4. Comparison of job completion Time

IV. CONCLUSION

The proposed resource-aware scheduling technique for

MapReduce multi-job workloads that aims at

improving resource utilization across machines while

observing completion time goals. Job profiling

information to dynamically adjust the number of slots

on each machine, as well as workload placement across

them, to maximize the resource utilization of the

cluster. Phase and Resource Information-aware

Scheduler for MapReduce clusters that performs

resource-aware scheduling at the phase level.

V. REFERENCES

[1] G. Z. Guo, G. Fox, and M. Zhou, "Investigation of

data locality in mapreduce," in Proc. 12th

IEEE/ACM Int. Symp. Cluster, Cloud Grid

Comput., May 2012, pp. 419–426.

[2] M. Zaharia, D. Borthakur, J. Sen Sarma, K.

Elmeleegy, S. Shenker, and I. Stoica, "Delay

scheduling: A simple technique for achieving

locality and fairness in cluster scheduling," in Proc.

5th Eur. Conf. Comput. Syst., Apr. 2010, pp. 265–

278.

[3] J. Jin, J. Luo, A. Song, F. Dong, and R. Xiong,

"BAR: An efficient data locality driven task

scheduling algorithm for cloud computing," in

Proc. 11th IEEE/ACM Int. Symp. Cluster, Cloud

Grid Comput., May 2011, pp. 295–304.

[4] M. Ehsan, and R. Sion, "LiPS: A cost-efficient data

and task coscheduler for MapReduce," in Proc.

IEEE 27th Int. Symp. Parallel Distrib. Process.

Workshops PhD Forum, May 2013, pp. 2230–

2233.

[5] J. Park, D. Lee, B. Kim, J. Huh, and S. Maeng,

"Locality-aware dynamic VM reconfiguration on

MapReduce clouds," in Proc. 21st Int. Symp. High-

Perform. Parallel Distrib. Comput., Jun. 2012, pp.

27–36.

[6] X. Bu, J. Rao, and C.-Z. Xu, "Interference and

locality-aware task scheduling for Mapreduce

applications in virtual clusters," in Proc. 22nd Int.

Symp. High-Perform. Parallel Distrib. Comput.,

Jun. 2013, pp. 227– 238.

[7] C. Tian, H. Zhou, Y. He, and L. Zha, "A dynamic

mapreduce scheduler for heterogeneous

workloads," in Proc. IEEE 8th Int. Conf. Grid

Cooperative Comput., 2009, pp. 218–224.

[8] J. Polo, D. Carrera, Y. Becerra, J. Torres, E.

Ayguade, M. Steinder, and I. Whalley,

"Performance-driven task co-scheduling for

mapreduce environments," in Proc. IEEE Netw.

Oper. Manage. Symp., 2010, pp. 373–380.

