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ABSTRACT 
MapReduce has become a popular model for data-intensive computation in recent years. The schedulers are critical 

in enhancing the performance of MapReduce/Hadoop in presence of multiple jobs with different characteristics and 

performance goals. The propose improve the resource aware scheduling technique for Hadoop map-reduce multiple 

jobs running that aims to improving resource utilization across multiple virtual machines while observing 

completion time goals. The propose algorithm influences job profiling information to dynamically adjust the number 

of slots allocation based on job profile and resource utilization on each machine, as well as workload placement 

across them, to maximize the resource utilization of the cluster. This single node experimental result show the 

resource aware scheduling that improves job running time and reduce the resource utilization without introducing 

stragglers.  
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I. INTRODUCTION 

AIS 
 

MapReduce is a processing technique and a program 

model for distributed computing based on java. The 

MapReduce algorithm contains two important tasks, 

namely Map and Reduce. Map takes a set of data and 

converts it into another set of data, where individual 

elements are broken down into tuples (key/value pairs). 

Secondly, reduce task, which takes the output from a 

map as an input and combines those data tuples into a 

smaller set of tuples. As the sequence of the name 

MapReduce implies, the reduce task is always 

performed after the map job. located along coast lines 

or, when out of range of terrestrial networks, through a 

growing number of satellites that are fitted with special 

AIS receivers which are capable of deconflicting a 

large number of signatures. MapReduce is that it is 

easy to scale data processing over multiple computing 

nodes. Under the MapReduce model, the data 

processing primitives are called mappers and reducers. 

Decomposing a data processing application into 

mappers and reducers is sometimes nontrivial. But, 

once we write an application in the MapReduce form, 

scaling the application to run over hundreds, thousands, 

or even tens of thousands of machines in a cluster is 

merely a configuration change. This simple scalability 

is what has attracted many programmers to use the 

MapReduce model. 

 

II. METHODS AND MATERIAL 
 

1. Ease of Use   

 

A. MAP-REDUCE  Map stage 

 

The map or mapper’s job is to process  the input data. 

Generally, the input data is in the form of file or  

directory and is stored in the Hadoop file system 

(HDFS). The  input file is passed to the mapper 

function line by line. The  mapper processes the data 

and creates several small chunks of  data. The 

MapReduce framework operates on key-value pairs,  

that is, the framework views the input to the job as a set 

of  key-value pairs and produces a set of key-value pair 

as the  output of the job, conceivably of different types. 
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Figure 1. Map-Reduce work flow 

The key and value classes have to be serializable by the 

framework and hence, it is required to implement the 

Writable interface. Additionally, the key classes have 

to implement the Writable Comparable interface to 

facilitate sorting by the framework. 

 

Reduce stage: This stage is the combination of the 

Shuffle stage and the Reduce stage. The Reducer’s job 

is to process the data that comes from the mapper. 

After processing, it produces a new set of output, which 

will be stored in the HDFS. 

 

B. HDFS File System 

 

Hadoop File System was developed using distributed 

file system design. It is run on commodity hardware. 

Unlike other distributed systems, HDFS is highly fault 

tolerant and designed using low-cost hardware. 

 

 
Figure 3. HDFS follows the master-slave architecture 

 

HDFS holds very large amount of data and provides 

easier access. To store such huge data, the files are 

stored across multiple machines. These files are stored 

in redundant fashion to rescue the system from possible 

data losses in case of failure. HDFS also makes 

applications available to parallel processing.  

 

C. Hadoop MRv1  

 

Apache Hadoop 1.x and its processing framework, 

MRv1 (Classic), so that we can get a clear picture of 

the differences in Apache Hadoop 2.x MRv2 (YARN) 

in terms of architecture, components, and processing 

framework. In Hadoop 1, a single Namenode managed 

the entire namespace for a Hadoop cluster. With HDFS 

federation, multiple Namenode servers manage 

namespaces and this allows for horizontal scaling, 

performance improvements, and multiple namespaces. 

The implementation of HDFS federation allows 

existing Namenode configurations to run without 

changes. For Hadoop administrators, moving to HDFS 

federation requires formatting Namenodes, updating to 

use the latest Hadoop cluster software, and adding 

additional Namenodes to the cluster.  

 

 
Figure 2. Hadoop MRv1 architecture diagram 

 

Apache Hadoop is a scalable, fault-tolerant distributed 

system for data storage and processing. The core 

programming model in Hadoop is MapReduce. 

 

2. Hybrid Job-Driven Scheduling 

 

The cost-efficient for a tenant with a limited budget to 

establish a virtual MapReduce cluster by renting 

multiple virtual private servers (VPSs) from a VPS 

provider. To provide an appropriate scheduling scheme 

for this type of computing environment, the existing 

paper a hybrid job-driven scheduling scheme (JoSS for 

short) are used. JoSS provides not only job level 

scheduling, but also map-task level scheduling and 

reduce-task level scheduling. JoSS classifies 

MapReduce jobs based on job scale and job type and 

designs an appropriate scheduling policy to schedule 

each class of jobs. The goal is to improve data locality 

for both map tasks and reduce tasks, avoid job 

starvation, and improve job execution performance. 

Two variations of JoSS are further introduced to 
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separately achieve a better map-data locality and a 

faster task assignment.  

 

In order to provide an appropriate scheduling scheme 

for a tenant to achieve a high map-and-reduce data 

locality and improve job performance in his/her virtual 

MapReduce cluster, in this paper we propose a hybrid 

job-driven scheduling scheme (JoSS for short) by 

providing scheduling in three levels: job, map task, and 

reduce task. JoSS classifies MapReduce jobs into either 

large or small jobs based on each job’s input size to the 

average datacenter scale of the virtual MapReduce 

cluster, and further classifies small MapReduce jobs 

into either map-heavy or reduce-heavy based on the 

ratio between each job reduce-input size and the job’s 

map-input size. Then JoSS uses a particular scheduling 

policy to schedule each class of jobs such that the 

corresponding network traffic generated during job 

execution (especially for inter-datacenter traffic) can be 

reduced, and the corresponding job performance can be 

improved. In addition, we propose two variations of 

JoSS, named JoSS-T and JoSS-J, to guarantee a fast 

task assignment and to further increase the VPS-

locality, respectively. 

 

D. State of the Art JoSS schduling Algorithms  

 

Job Classification: Before introducing the algorithm of 

JoSS, first describe how JoSS classifies jobs and 

schedules each class of jobs. Let Sreduce and Smap be 

the total reduceinput size and the total map-input size 

of J, respectively. Based on the ratio of Sreduce over 

Smap, J can be classified into either a reduce heavy job 

or a map-heavy job. If J satisfies Eq. (1), implying that 

the network overhead is dominated by J’s reduce-input 

data, then J is classified as a reduce-heavy job (RH job 

for short). Otherwise, J is classified as a map-heavy job 

(MH job for short). Note that td is a threshold to 

determine the classification, td 0: 

 

 
 

Scheduling Policies: JoSS utilizes the following  three 

scheduling policies 

 

 
 

Policy B : This policy is designed for a small MH job. 

If J is a small MH job, it would be better that each 

mapper of J is close to its input block, and each reducer 

of J is close to most mappers of J. Hence, policy B 

works as follows: It schedules J’s map tasks based on 

the number of unique input blocks of J held by each 

datacenter. If a datacenter holds more unique blocks of 

J, more map tasks of J will be scheduled to the VPSs at 

this datacenter. The purpose is allowing each mapper of 

J to retrieve its input block from its local datacenter. In 

addition, to make J’s reducers close to most J’s 

mappers, policy B schedules all reduce tasks of J to the 

datacenter that holds the maximum number of J’s 

unique blocks. 

 
 

Selecting the Best Threshold: If J is classified as a RH 

job, policy A will be used to schedule J. The worst case 

for J’s mappers is that all of them need to retrieve their 

input blocks from other datacenters. However, because 

of policy A, J’s reducers can completely retrieve their 
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input from their local datacenters. Hence, the worst-

case inter-datacenter traffic for this classification, 

denoted by TR1, is 

 

 

 

 

 
E. Disadvantage of Hybrid Job-Driven Scheduling  

 

JOSS, jobs are still forced to wait significantly when 

the MapReduce system assigns equal sharing of 

resources due to dependencies between Map, Shuffle, 

Sort, Reduce phases. JOSS response time is still longer 

than necessary due to dependencies between the 

Map/Shuffle/Sort/Reduce phases. Joss Task assignment 

problem into a Linear Sum Assignment Problem so as 

to find the optimal assignment so it will take long time 

for job assign. 

 

III. RESULTS AND DISCUSSION 
 

1. Proposed Framework 

 

In our framework, each Task Tracker node monitors 

resources such as CPU utilization, disk channel IO in 

bytes/s, and the number of page faults per unit time for 

the memory subsystem. Although we anticipate that 

other metrics will prove useful, we propose these as the 

basic three resources that must be tracked at all times to 

improve the load balancing on cluster machines. In 

particular, disk channel loading can significantly 

impact the data loading and writing portion of Map and 

Reduce tasks, more so than the amount of free space 

available. Likewise, the inherent opacity of a machine’s 

virtual memory management state means that 

monitoring page faults and virtual memory-induced 

disk thrashing is a more useful indicator of machine 

load than simply tracking free memory. Instead of 

having a fixed number of available computation slots 

configured on each Task Tracker node, we compute 

this number dynamically using the resource metrics 

obtained from each node. In one possible heuristic, we 

set the overall resource availability of a machine to be 

the minimum availability across all resource metrics. In 

a cluster that is not running at maximum utilization at 

all times, we expect this to improve job response times 

significantly as no machine is running tasks in a 

manner that runs into a resource bottleneck. the fixed 

maximum number of compute slots per node, viewing 

it as a resource allocation decision made by the cluster 

administrators at configuration time. Instead, we decide 

the order in which free Task Tracker slots are 

advertised according to their resource availability. As 

Task Tracker slots become free, they are buffered for 

some small-time period (say, 2s) and advertised in a 

block. Task Tracker slots with higher resource 

availability are presented first for scheduling tasks on. 

In an environment where even short jobs take a 

relatively long time to complete, this will present 

significant performance gains. Instead of scheduling a 

task onto the next available free slot (which happens to 

be a relatively resourcedeficient machine at this point), 

job response time would improve by scheduling it onto 

a resource-rich machine, even if such a node takes a 

longer time to become available. Buffering the 

advertisement of free slots allows for this scheduling 

allocation. The output of the resource aware algorithm 

process F. Map /Reduce Programming model 

MapReduce is a popular programming model for 

processing large data sets, initially proposed by 

Google. Now it has been a de facto standard for large 

scale data processing on the cloud. Hadoop is an open-

source java implementation of MapReduce. When a 

user submits jobs to the Hadoop cluster, Hadoop 

system breaks each job into multiple map tasks and 

reduce tasks. Each map task processes (i.e. scans and 
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records) a data block and produces intermediate results 

in the form of key-value pairs. Generally, the number 

of map tasks for a job is determined by input data. 

There is one map task per data block. The execution 

time for a map task is determined by the data size of an 

input block. The reduce tasks consists of 

shuffle/sort/reduce phases. In the shuffle phase, the 

reduce tasks fetch the intermediate outputs from each 

map task. In the sort/reduce phase, the reduce tasks sort 

intermediate data and then aggregate the intermediate 

values for each key to produce the final output. The 

number of reduce tasks for a job is not determined, 

which depends on the intermediate map outputs. 

 

 
H. Task Scheduler 

 

Task Scheduler is responsible for enforcing the 

placement decisions, and for moving the system 

smoothly between a placement decision made in the 

last cycle to a new decision produced in the most recent 

cycle. The Task Scheduler schedules tasks according to 

the placement decision made by the Placement 

Controller. Whenever a task completes, it is the 

responsibility of the Task Scheduler to select a new 

task to execute in the freed slot, by providing a task of 

the appropriate type from the appropriate job to the 

given Task Tracker. The placement algorithm generates 

new placements, but these are not immediately 

enforced as they may overload the system due to tasks 

still running from the previous control cycle. The Task 

Scheduler component takes care of transitioning 

without overloading any Task Trackers in the system 

by picking jobs to assign to the Task Tracker that do 

not exceed its current capacity, sorted by lowest utility 

first. For instance, a Task Tracker that is running 2 map 

tasks of job A may have a different assignment for the 

next cycle, say, 4 map tasks of job B. Instead of 

starting the new tasks right away while the previous 

ones are still running, new tasks will only start running 

as previous tasks complete and enough resources are 

freed. 

 

I. Job Profiles  

 

The proposed job scheduling technique relies on the 

use of job profiles containing information about the 

resource consumption for each job. Profiling is one 

technique that has been successfully used in the past for 

MapReduce clusters. Its suitability in these clusters 

stems from the fact that in most production 

environments jobs are ran periodically on data 

corresponding to different time windows. V  

 

2. Resource Aware Scheduling Algorithm  

 

The job given a placement matrix, it defines a utility 

function that combines the number of map and reduce 

slots allocated to the job with its completion time goal 

and job characteristics. Below we provide a description 

of this function. Given placement matrices P
M

and P
R
, it 

can define the number of map and reduce slots 

allocated to a job j 

 

 
The intuition behind it is that reduce tasks should start 

at the earliest possible time, so the shuffle sub-phase of 

the job (reducers pulling data produced by map tasks) 

can be fully pipelined with execution of map tasks.  

 

J. Map /Reduce Programming Model  

 

Given an application placement matrix P, a utility value 

can be calculated for each job in the system. The 

performance of the system can then be measured as an 

ordered vector of job utility values, U. The objective of 
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RAS is to find a new placement P of jobs on Task 

Trackers that maximizes the global objective of the 

system, U(P), which is expressed as follows: 

 

 
 

The proposed algorithm consists of two major steps: 

placing reduce tasks and placing map tasks. Reduce 

tasks are placed first to allow them to be evenly 

distributed across Task Trackers. By doing this we 

allow reduce tasks to better multiplex network 

resources when pulling intermediate data and also 

enable better storage usage. The placement algorithm 

distributes reduce tasks evenly across Task Trackers 

while avoiding collocating any two reduce tasks. If this 

is not feasible due to the total number of tasks it then 

gives preference to avoiding collocating reduce tasks 

from the same job. Recall that in contrast to other 

existing schedulers, RAS dynamically adjusts the 

number of map and reduce tasks allocated per Task 

Tracker while respecting its resource constraints. 

Notice also that when reduce tasks are placed first, they 

start running in shuffle phase. demand of resources is 

directly proportional to the number of map tasks placed 

for the same job. Therefore, in the absence of map tasks 

for the same job, a reduce task in shuffle phase only 

consumes memory. The second step is placing map 

tasks. This stage of the algorithm is utility-driven and 

seeks to produce a placement matrix that balances 

satisfaction across jobs while treating all jobs fairly. 

This is achieved by maximizing the lowest utility value 

in the system. This part of the algorithm executes a 

series of rounds, each of which tries to improve the 

lowest utility of the system. In each round, the 

algorithm removes allocated tasks from jobs with the 

highest utility, and allocates more tasks to the jobs with 

the lowest utility. For the sake of fairness, a task gets 

de-allocated only if the utility of its corresponding job 

remains higher than the lowest utility of any other job 

in the system. This results in increasing the lowest 

utility value across 

 

3. Advantage of Traffic Knowledge 

 

Balancing different kinds of workload in Task Tracker 

to increase the resource utilization of both I/O bound 

and CPU bound jobs. The resource aware scheduling 

algorithm that is said to improve the job execution 

without introducing stragglers. The resource aware 

scheduling algorithm for this and show that produces 

up to 18% improvement in resource utilization while 

allowing jobs to complete up to 1.3 times faster than 

current Hadoop schedulers. The resource aware 

priorities can accommodate multiple tasks' lengths, job 

sizes, and jobs' waiting time in this environment while 

reducing average response time. The resource aware 

scheduler based on dynamic priority in order to reduce 

the delay for variable length concurrent jobs, and relax 

the order of jobs to maintain data locality. 

 

4. Implementation  

 

Hadoop is a framework written in Java for running 

applications on large clusters of commodity hardware 

and incorporates features similar to those of the Google 

File System (GFS) and of the MapReduce computing 

paradigm. Hadoop’s HDFS is a highly fault-tolerant 

distributed file system and, like Hadoop in general, 

designed to be deployed on low-cost hardware. It 

provides high throughput access to application data and 

is suitable for applications that have large data sets.  

 

K. Word Count Job Running 

  

The size of intermediate data has a big impact on 

performance of Hadoop. Three typical built-in 

benchmark applications in Hadoop are used in these 

experiments: Word Count without Combiner, Sort and 

Word-Count with combiner (WCC). These three 

benchmarks represent different relations between 

intermediate data and input data. Word Count without 

combiner, Sort, and Word-Count with combiner 

represent the cases where the size of intermediate data 

is larger than, equal to and smaller than the size of 

input data, respectively. 
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Figure 4. Comparison of job completion Time 

 

 

IV. CONCLUSION 

 
The proposed resource-aware scheduling technique for 

MapReduce multi-job workloads that aims at 

improving resource utilization across machines while 

observing completion time goals. Job profiling 

information to dynamically adjust the number of slots 

on each machine, as well as workload placement across 

them, to maximize the resource utilization of the 

cluster. Phase and Resource Information-aware 

Scheduler for MapReduce clusters that performs 

resource-aware scheduling at the phase level. 
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