
CSEIT1722201 | Received : 25 March 2017 | Accepted: 06 April 2017 | March-April-2017 [(2)2: 592-595]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2017 IJSRCSEIT | Volume 2 | Issue 2 | ISSN : 2456-3307

592

Mathematical Functions C Code Generator

Vishal Limgire, Mahesh Nikam, Diksha Jadhav, Pooja Pawar

Department of Computer Engineering, Trinity Academy of Engineering Pune, Maharashtra, India

ABSTRACT

The standard mathematical library known as libm off ers a small set of functions in a small set of precisions.

Performance of libm functions is of critical importance, in particular in scientific and financial computing libm for

each new processor, a time-consuming and error-prone task. A first objective of this project is therefore to automate

libm development, up to the point where libms generated in a fraction. Applications often require functions not

present in the libm. In such case, a composition of libm functions may be very inefficient, or simply not possible

(function defined by a deferential equation or by interpolation of a set of data points for instance). Even the libm

functions are oared in a limited choice of implementations which will most of the time poorly match the actual

needs of an application in terms of range, accuracy, performance and resource consumption. The set of functions

and contexts available to programmers. The process of implementing a mathematical function into code is

composed of several steps; typically range reduction, approximation, evaluation (additions, multiplications, and pre-

computed constant values). Approach of this project is therefore to unify the understanding of function, sharing

common mathematical, methodological, and implementation tools. In particular this will lead to on-demand

generation for the same breadth of targets and with the same guarantees on numerical quality.

Keywords: Processors, Code generation, Elementary function approximation, Interfaces, Reusable Software,

Reusable libraries.

I. INTRODUCTION

Mathematical function c code generation is concept in

which directly c code will be generate on the given

function when user will input. This will be more

efficient to developer, mathematician, scientist and

students for their respective use. It will help user reduce

problem of time, eff ort and hand code error and also

get more result that is accurate in digit and precision.

This application will successfully overcome the

drawbacks of previous application.

 Mathematical function c code generation it helps save

time, eff ort and also is a hand code error. We need to

set up some strategies to encourage user will easily

handle tool that mean user friendly. These may include:

 1. Input as mathematical function and given range.

 2. Generate mathematical c code for given function

 and range[1].

The number of functions of interest is huge. There is an

even larger number of implementation contexts:

required precision, target hardware, performance/cost

constraints. This defines an enormous set of

implementations of interest, far too large to manually

implement them all [2]. The current solutions consist in

living with a restricted set of functions/precisions (the

libm approach), and living with implementations that

are widely sub-optimal for most contexts. For instance,

the code of some functions in open source libms is now

twenty years old. As long as each function must be

implemented manually, the set of functions available to

programmers will be limited [3]. Programmers,

however, do need application-specific functions not

present in the libm.

This implementation is likely to be much less accurate

and much less efficient than that of an expert. We must

insist again on the accuracy issue this is not only a

problem of performance, but also of the validity of the

result [4].

Volume 2 | Issue 2 | March-April-2017 | www.ijsrcseit.com 593

II. METHODS AND MATERIAL

A. System Design

Figure -1: The proposed tool suite

We are currently focusing on two main use cases where

we need a libm generator, both illustrated by Figure 1.

The first one targets the widest audience of

programmers. It is a push-button approach that will try

to generate code on a given domain and for a given

precision for an arbitrary univariate function with

continuous derivatives, some order. The function may

be provided as a mathematical expression, or even as an

external library that is used as a black box. Call this

approach the open-ended approach, in the sense that the

function that can be input to the generator is arbitrary –

which does not mean that the generator will always

succeed in handling it. Section III will describe how this

generator has evolved from simple polynomial

approximations to the generation of more sophisticated

evaluations schemes, including attempts to range

reduction. Here, the criterion of success is that the

generated code is better than whatever other approach

the programmer would have to use (composition of libm

function, numerical integration if the function is defined

by an integral, etc). “Better” may mean faster, or more

accurate, or better behaved in corner cases, etc [3].

B. Back end Process

To overcome the drawbacks of previous system we

proposed a new system or tool to overcome previous

problems. So in our tool we are mainly dealing with

accuracy speed, and length of the code which resulted

in failure of previous system. so user will provide the

any mathematical functions such as arithmetic,

trigonometric, exponential etc. as a input and in result

he/she will get the corresponding code for that

mathematical functions and this code is useful for

developers, mathematicians and researchers for their

further implementations.

 Figure2. Tool Back End Process

Our tool will contains a input screen where user will

provide the mathematical functions with parameters

such as angle and precision and this function is go in

database and it will check whether that function is

present in database or not. If that function is present in

database then it will produce the code corresponding to

the functions and if that function is not present in the

database then it display the error message incorrect

function. This tool is easy to handle as compare to

MATLAB .we tried to develop an tool which will help

in giving small amount of code to the users as compare

to MATLAB. The main aim or goal of our tool is to

provide a code, which will help to developers,

researchers, mathematician and student.

C. Software Implementation

 General Overview

In our system we are generating the c code for

mathematical functions. To understand the challenge of

writing code generator for mathematical function

manually it is important to note that how they are

implemented. In this application the first target is

programmer. It is a push button approach that will try to

generate code. In this we embed the existing hand

crafted code in a framework to make it more generic.

We describe a python framework is manage back end

code generation we present it form point of view of

developer. All the framework is implemented in python

language, Python variables as being the output of

generated code.

Volume 2 | Issue 2 | March-April-2017 | www.ijsrcseit.com 594

 Python Language

1) Free: As in speech and as in beer. (It won’t cost you

a thing, and you are allowed to view and modify the

source.)

2) Beautiful programming language: Python was

created to be a generic language that is easy to read,

while Matlab started as a matrix manipulation package

to which they added a programming language. As you

become more familiar with Python, you will be amazed

with how well it is designed. There is only one word for

that: Beautiful.

3) Powerful: Because it’s so well designed, it’s easier

than other languages to transform your ideas into code.

Further, Python comes with extensive standard libraries,

and has a powerful data types such as lists, sets and

dictionaries. These really help to organize your data.

4) Namespaces: Matlab supports namespaces for the

functions that you write, but the core of Matlab is

without namespaces; every function is defined in the

global namespace. Python works with modules, which

you need to import if you want to use them. (For

example from skimage import morphology.) Therefore

Python starts up in under a second. Using namespaces

gives structure to a program and keeps it clean and clear.

In Python everything is an object, so each object has a

namespace itself. This is one of the reasons Python is so

good at introspection.

5) Portability: Because Python is for free, your code

can run everywhere. Further, it works on Windows,

Linux, and OS X.

6) Class and function definitions: Functions and

classes can be defined anywhere. In one file (whether it

is a module or a script) you can design as many

functions and classes as you like. You can even define

one in the command shell if you really want to.

7) Great GUI toolkits: With Python you can create a

front-end for your application that looks good and

works well. You can chose any of the major GUI

toolkits like TKinter or Qt. Pyzo comes with PySide (a

wrapper for Qt) [2].

 Processor Description :

Modern processor such as IA 32 and ARM exhibits lots

a variety of parallelism and the capabilities of hardware

to extract their parallelism. Generating optimized code

for variety of processor is very challenging so we want

to optimized code not only for processor but also for

context that include the processor. For this we define for

each processor a class that provides information to

optimization steps and also provide code generation

service. So for constructing this tool we are using 2GB

of RAM and Core to Duo processor.

 Platform Independent :

This tool is platform independent i.e. run on both

ubuntu and Microsoft windows .Only difference is in

their file format for windows batch file is used while for

ubuntu shell script is used.

1) Batch File: Batch file is kind of Microsoft windows

file. It consist of series of command executed by

command line interpreter. It is stored in plain

text. When batch file is run the shell program read

the file and execute its command. The extension for

batch file is .bat

2) Shell Script: It is a computer program run by UNIX

shell. Operation perform by this are file

manipulation, program execution, printing text etc.

 GCC Complier or G++ Compiler :

Complier used for generating code is G++. The

complier that take C or C++ source code and compile it

into binary file that can be executed to actually run the

program. For compiling your source code must reside

in the directory that your source file are. By using G++

we can compile multiple files by compiling separate

module and linking them into single file.

III. RESULTS AND DISCUSSION

As a result at the end we can say that open-ended code

generation has reached a certain level of maturity. It is

able to generate the code as quickly as possible. The

produced code is available quickly and reduce cost,

time effort and hand code error.

Volume 2 | Issue 2 | March-April-2017 | www.ijsrcseit.com 595

IV.CONCLUSION

A good case study for working on such integration is

the correct rounding of elementary functions. It presents

several challenges, such as function evaluation in

larger-than-standard precisions or less common formats.

Ideally, we wish we could have a generator where we

have a clear separation (as on Figure 1) between a front-

end building an approximation scheme, and a back end

implementing it on a given target technology.

V. FUTURE SCOPE

1. More functions we can added with respect to time

and need.

2. Complex operation such as integration and derivation

is implemented.

VI.REFERENCES

[1] Nicolas Brunie, Olga Kupriianova "Code

generators for mathematical functions" 2015 IEEE

22nd Symposium on Computer Arithmetic.

[2] M. Dukhan, "PeachPy: A Python framework for

developing high performance assembly kernels," in

Python for High Performance and Scientific

Computing, 2013.

[3] C. S. Anderson, S. Story, and N. Astafiev,

"Accurate math functions on the Intel IA-32

architecture: A performance driven design," in 7th

Conference on Real Numbers and Computers,

2006, pp. 93–105.

[4] "IEEE standard for floating-point arithmetic," IEEE

754-2008, also ISO/IEC/IEEE 60559:2011, Aug.

2008.

