
CSEIT1722239 | Received : 01 April 2017 | Accepted : 14 April 2017 | March-April-2017 [(2)2: 784-788]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2017 IJSRCSEIT | Volume 2 | Issue 2 | ISSN : 2456-3307

784

Query Engine Design and Performance Analysis : A Review
Chemwotie Kipkurui Brian

Department of Computing, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya

ABSTRACT

Distributed real-time computing has been the domain of practical system engineering for many decades. The

development of a discipline of real-time programming would allow the construction of programs with analysable

and variable timing properties. Such a discipline will need to be built on a well-integrated framework in which

different methods are used where appropriate to obtain timing properties to which a high-level assurance can be

attached. Time is everything in this current system, everything fast will gain the most valuable achievements

especially in the business field. Whoever tries to get the first opportunity to fulfil the market needs will gain most

profit. This paper looks into the various query engine models and frameworks that tries to improve on both the

design and performance.

Keywords: Distributed, Real-Time Computation, Query Engine

I. INTRODUCTION

We will find many real time systems around us. Their

field of implementation range from small to large-scale

use, like for instance industrial use or the military.

Most of these applications are also safety critical

systems that need to be reliable therefore; we need a

reliable and fault-tolerant distributed real-time

computation system. Real-time computing is any

information processing system, which has to respond to

externally generated input stimulated within a finite

and specified period. We can also define a real-time

system as a processing system that processes any

information and generates output within a specified

time. Storm is an example of a distributed real-time

data processing system, which guarantees that the

system will continue to operate properly in failure state,

and all incoming data will be processed [1].

There has been other notable distributed real-time

systems including S4 [2], MillWheel [3], Samza [4],

Spark Streaming [5] and Druid [6].With many

distributed real-times computation, there are some

requirements of real-time processing which are

becoming standard for distributed real-time

computation systems. For supporting analysis in real-

time computation, querying is one of the most used

tools.

II. QUERY OPTIMIZATION STRATEGIES

A. Iterative Dynamic Programming (IDP)

Kossman [7] proposed the use of iterative dynamic

programming in place of dynamic programming. He

argues that IDP is able to produce as good plans as

dynamic programming if there are enough resources

available, and IDP is, in addition, able to adapt in cases

where there are not enough resources available or the

query is too complex for dynamic programming.

B. Randomized optimization

Query optimization for relational database systems is a

combinatorial optimization problem, which makes

exhaustive search unacceptable as the query size grows.

Randomized algorithms, such as Simulated Annealing

(SA) and Iterative Improvement (II), are viable

alternatives to exhaustive search. Ioannidis et al [8]

adapted these algorithms to the optimization of project-

select-join queries. The author tested them on large

queries of various types with different databases,

concluding that in most cases SA identifies a lower cost

access plan than II.

Volume 2 | Issue 2 | March-April-2017 | www.ijsrcseit.com 785

C. Dynamic Approach

Although. Query optimization is the most critical phase

in query processing. Hameurlain et al [9] tries to

describe synthetically the evolution of query

optimization methods from uniprocessor relational

database systems to data Grid systems through parallel,

distributed and data integration systems. The author

points out a set of parameters to characterize and

compare query optimization methods, mainly: size of

the search space, type of method (static or dynamic),

modification types of execution plans (re-optimization

or re-scheduling), level of modification (intra-operator

and/or inter-operator), type of event (estimation errors,

delay, user preferences), and nature of decision making

(centralized or decentralized control).

D. Static Approach

Although. Query optimization is the most critical phase

in query processing

III. OTIMIZING QUERY PRACTICE

The following systems are set practices of query

optimization on existing systems. The practices have

been tested and proven on different systems and all the

results recorded and published.

A. JAQL

JAQL is a part system of IBM Big insights to analyze

large semi structured datasets in parallel using

Hadoop’s Map Reduce framework [10]. It has some

common features with other data processing languages.

JAQL was also developed for scale-out framework

architecture such as Pig [11], Hive [12] and

DryadLINQ [13].JAQL developed methods that are

also implementable in other scale-out framework

architectures that have been listed above with some

minor modification. JAQL components consists of a

declarative scripting language, a compiler and a

runtime. JAQL contains a scripting language, a

compiler and hadoop's runtime components.

For querying language, JAQL evaluates statements,

which are either expressions or assignments. The

system in JAQL has an input to produce an output that

can feed another expression as input. All of the

aggregate functions such filter, join and group by are

supported by JAQL. A user can also submit the SQL

query that will be translated to JAQL system. Java and

the other languages are also supported by JAQL.

For JAQL's compiler, It’s designed as a heuristics-base

rewrite engine which optimize input scripts applying a

set of transformation rules. JAQL will simplify

expression to lower level operators so it can be

executed by this. Map Reduce framework will evaluate

an expression that has been transformed to map reduce

function. This rule is the most important rules of JAQL.

In the distributed computation, the interpreters

evaluates the script locally on the nodes that does the

compilation of the script. In order to do parallel

execution, JAQL will spawns interpreters to remote

nodes using Map Reduce function.

B. JQL

JQL [14] is a java's extension which has a capability

for querying the collection of objects. This means the

query is applicable on objects in class collections of the

system and usable for expressions checking of specific

instances types at run-time.

The query engine is allowed by query to run the

implementation detail task with abstraction which

provided by JQL for handling sets of object, thus the

code will be smaller and with permission the query

valuator can make a dynamical decision even though

the situation keep changing at run time. In program

language, run-time execution can be improve by the

query optimization strategies, which is come from

database domain. They main concept is do the query

optimization task at compile-time as many as we can.

Histograms is used by the technique to estimate the

selection of join and predicates in a query. The order of

query joins and predicates will be ordered according to

that estimation. After this technique obtained the plan

for query at compile-time, the plan is going to be

compiled at run-time. The estimation of errors rate and

split merger algorithms are suitable and efficient to

maintain the histogram accurately, this is showed by

the experimental results which has been done before.

IV.REAL-TIME PROCESSING FRAMEWORK

Real-time processing network has become a new trend

in the last couple of years. Most organizations are

pursuing implementation of real-time processing

systems. With this technology, they want to achieve

Volume 2 | Issue 2 | March-April-2017 | www.ijsrcseit.com 786

what they could not before, real-time analysis to

facilitate real-time decision-making.

A. Spark Streaming

Spark is an open-source distributed computing

framework that runs on a computer cluster. Spark uses

a dubbed Resilient Distributed Datasets (RDD) for

repeated query [15] and stored cache datasets in

memory. Spark's performance is much faster than

Hadoop map reduce which is around 100 times faster

for iterative machine application [16]. Spark streaming

is a streaming computation as a series of a very small

and deterministic batch jobs [17].

Figure 1. Spark Streaming Process

These are Spark streaming concepts:

1. Dividing live stream into several batches of X

seconds.

2. Spark assume each batch of data as RDDs and does

the process by using RDD operations.

3. At the end, RDD operation’s results are returned in

batches.

B. Spark SQL (Shark)

Shark is system that analyze data and an extension of

Spark distributed computing framework [18]. This

system is combining SQL queries with Spark analytic

function at scale and also has a recovery-recovery for

query. Shark is able to execute SQL quires faster

enough at 100 times than apache hive and Hadoop in

machine learning programs. Shark implemented a

column-oriented in memory for storage and dynamic

strategies for the preplanning mid-query in order to

effectively execute the SQL statement.

C. Storm

A distributed real-time computation framework which

has a capability to process data in the unbounded

streams form [19]. Strom does the same thing with

Hadoop except Storm does the real-time processing

while Hadoop is a batch processing. Queuing and

database technologies are also supported by Storm

framework. Streams of data are fed to Storm topology

and Storm process those streams in the very random

complex ways, stream repartition between each stage of

computation is need. Storm support multi-languages

(ruby, python, java script, Perl, and PHP). Storm

architecture is presented by three nodes which have

different functionality.

Figure 2 Storm Architecture

a) Nimbus node

Nimbus [20] is a master node that will do the assigning

tasks to supervisor nodes, monitoring failures in the

cluster and distributing code to be executed around the

cluster. Nimbus node is also responsible for monitoring

all of the computation and reallocating workers.

b) ZooKeeper

Distributed configuration, synchronized service and

naming registry for Storm cluster, Zookeeper [21]

responsible for storing all of nimbus and supervisor

state in the Znode or in the local disk.

c) Supervisor nodes

Listening and Receiving all distributed task that have

been assigned by the nimbus node. Supervisor is able

to start/stop the worker processes if necessary. Each

Worker in the supervisor nodes will executed a part of

the topology, while in Hadoop it called TaskTracker.

D. Storm Trident

Trident [14] is a Storm's extension which provides a

simple and easier framework for distributed real-time

big data analytics framework. Storm trident is also

developed by Twitter.

One of the Twitter's biggest problem is to keep the

statistics of how many tweets and tweeted URLs which

get retweeted by some millions of followers. Image a

famous person whose tweets a URL and has a millions

Volume 2 | Issue 2 | March-April-2017 | www.ijsrcseit.com 787

of followers. Many of his/her followers will do the

retweet. Thus how to calculate how many people in

tweeter have seen or read the URL? This function

called "Top retweet Url's". This feature will display

which one is the most tweeted in real-time.

The one and only solution was apache Storm, but with

the extension of Trident. Managing this kind of features

will became easier with the present of Storm trident.

Trident does the simplification for Storm. In the

traditional ways of Storm, we must configure a number

of Spouts, Bolts and also manage the configuration

how the tuple is distributed, which grouping we will

use. Tridents exists a lot of feature that will do the

complicated part. Trident has four operations that have

a different functionality.

1. The local operation will apply to each of partition

and there is no need to do network transfer.

2. The operation will be distributed which will cause

the stream also being distributed. In this operation,

network transfer is involved.

3. Operation for aggregate function which will need a

network transfer as part of the operation.

4. Merges and joins.

The fact that using in-memory state as a storing system

in Bolt doesn’t has fault-recovery or in other word is

fault-tolerant. The process in dying nodes will get

reassigned by nimbus node while the state can’t be

retrieved. Although we can use a ticket that has been

provided, the thoughtful way is to preserve to a reliable

database which is the reason why trident is useful if we

need to save the state. Trident does the pre-batch

processing to lighten our data store with only one

update for each message. Trident also provides an

aggregation API.

Although Trident can be used to simplify complex

algorithms computation, we must learn how to use

trident and use its own function that need to be learned.

The other framework which is Spark streaming already

provide SQL integration with its system which called

Shark. Strom has extension for trident while having no

SQL engine query.

E. Spark and Storm Comparison

Although the fact that Storm and Spark streaming are

distributed real-time processing, there are several

differences that will separate them. Storm and Spark

streaming will be compared side-by side and the table

below will present their differences.

 Spark Storm

Origin BackType,

Twitter

UC

Berkeley

Implemented in Scala Clojure

API language PHP , Java ,

Pyhton

Java, Scala

Processing

Model,

Arriving

events is

batched up in

the period of

shoet time

window before

the stream is

processed

The

incoming

event will

be process

in a real-

time. There

is no

waiting

time for

execution.

Latency Few seconds Sub second

Fault

Tolerance,

Data

Guarantees

Has a fault-

recovery and

statefull

computation

Storm will

guarantee

that the

each record

is processed

once or

more.

Storm also

allows

duplicating

during the

fault-

recovery.

This will

means there

is possible

mutable

state due to

two

incorrect

updates.

Hadoop

distribution

HDP ,

HortonWorks

MapR,

Cloudera

V. CONCLUSION

All sections described above are related to this research

that we have specially selected. There are several

frameworks that have been implemented in a

distributed system for real-time computation. Apache

Storm and Spark are two of many real-time distributed

computation framework that already exist that have

gained popularity for its performance for real-time

computation. In this paper, we have majorly focused

Volume 2 | Issue 2 | March-April-2017 | www.ijsrcseit.com 788

on Storm and spark engines. Storm has a non-SQL

extension called trident whereas Spark have been

implemented SQL query engine in their system. SQL is

a generic and most used language for queries, with the

absence of SQL extension. We have then looked into

the differences between the spark and storm engines.

VI. REFERENCES

[1]. A. Toshniwal et al., "Storm @ Twitter," pp. 147–

156, 2014.

[2]. L. Neumeyer and B. Robbins, "S4 : Distributed

Stream Computing Platform," IEEE Int. Conf.

Database Syst.

[3]. S. Chernyak et al., "MillWheel : Fault-Tolerant

Stream Processing at Internet Scale," Proc.

VLDB Endow., vol. 6, no. 11, 2013.

[4]. J. Samosir, M. Indrawan-santiago, and P. D.

Haghighi, "An Evaluation of Data Stream

Processing Systems for Data Driven Applications

2 Real-time Data Processing of Big Data,"

Procedia - Procedia Comput. Sci., vol. 80, pp.

439–449, 2016.

[5]. M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker,

and I. Stoica, "Discretized Streams : Fault-

Tolerant Streaming Computation at Scale," Proc.

Twenty-Fourth ACM Symp. Oper. Syst. Princ.,

no. 1, pp. 423–438, 2013.

[6]. F. Yang, E. Tschetter, G. Merlino, X. Léauté, N.

Ray, and J. Bieber, "Druid A Real-time

Analytical Data Store," Proc. 2014 ACM

SIGMOD Int. Conf. Manag. Data, pp. 157–168,

2014.

[7]. D. Kossmann and K. Stocker, "Iterative Dynamic

Programming : A New Class of Query

Optimization Algorithms," vol. 1, no. 212, 1999.

[8]. Y. E. Ioannidis, "RANDOMIZED

ALGORITHMS FOR OPTIMIZING LARGE

JOIN QUERIES + ALGORITHMS," ACM, pp.

312–321, 1990.

[9]. A. Hameurlain and F. Morvan, "Evolution of

Query Optimization Methods," Trans. on Large-

Scale Data- & Knowl.-Cent. Syst., vol. 33, no. 0,

pp. 211–242, 2009.

[10]. K. S. Beyer, R. Gemulla, A. Balmin, E. J.

Shekita, C. Kanne, and F. Ozcan, "Jaql : A

Scripting Language for Large Scale

Semistructured Data Analysis," Proc. VLDB

Endow., vol. 4, no. 12, pp. 1272–1283, 2011.

[11]. C. Olston, B. Reed, R. Kumar, and A. Tomkins,

"Pig Latin : A Not-So-Foreign Language for Data

Processing," ACM SIGMOD, 2008.

[12]. A. Thusoo et al., "Hive - A Warehousing

Solution Over a Map-Reduce Framework," ACM

VLDB Endow., 2009.

[13]. Y. Yu et al., "DryadLINQ : A System for

General-Purpose Distributed Data-Parallel

Computing Using a High-Level Language,"

USENIX Symp. Oper. Syst. Des. Implement., pp.

1–14, 2009.

[14]. D. Willis, D. J. Pearce, and J. Noble, "Efficient

Object Querying for Java," Eur. Conf. Object-

Oriented Program., vol. 4067, pp. 28–49, 2006.

[15]. M. Zaharia et al., "Resilient Distributed

Datasets : A Fault-Tolerant Abstraction for In-

Memory Cluster Computing," Proc. 9th USENIX

Conf. Networked Syst. Des. Implement., 2012.

[16]. K. Shvachko, H. Kuang, S. Radia, and R.

Chansler, "The Hadoop Distributed File System,"

26th Symp. Mass Storage Syst. Technol., pp. 1–

10, 2010.

[17]. M. Zaharia, M. Chowdhury, M. J. Franklin, S.

Shenker, and I. Stoica, "Spark : Cluster

Computing with Working Sets," Proc. 2nd

USENIX Conf. Hot Top. cloud Comput., 2010.

[18]. R. S. Xin et al., "Shark : SQL and Rich Analytics

at Scale," Proc. 2013 ACM SIGMOD Int. Conf.

Manag. Data, pp. 13–24, 2013.

[19]. R. Ranjan, "Streaming Big Data Processing in

Datacenter Clouds," IEEE Cloud Comput., 2015.

[20]. E. Feller, L. Rilling, and C. Morin, "Snooze : A

Scalable and Autonomic Virtual Machine

Management Framework for Private Clouds,"

12th IEEE/ACM Int. Symp. Clust. Cloud Grid

Comput., 2012.

[21]. P. Hunt, M. Konar, F. P. Junqueira, and B. Reed,

"ZooKeeper : Wait-free coordination for Internet-

scale systems," USENIX Annu. Tech. Conf., vol.

8, 2010.

