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ABSTRACT 
 

This paper investigates an optimum strategy of two-phase M/EK/1 queueing system with server dormant, start 

up and breakdowns. The server first starts batch service where the customers arrive according to Poisson 

process and in second-phase it gives individual service. Each individual will be given K number of phase wise 

service. The server is turned off each time the system empties.  When the queue length reaches or exceeds M, 

the server will be in dormant state and when it reaches to N or more than N batch service starts. During both 

batch as well as individual services the server may breakdown at any time according to a Poisson process and 

repair will be immediately done. Explicit expressions for the steady state distribution of the number of 

customers in the system are obtained and also derived various system measures.   

Keywords: Vacation, N-Policy, Two-phase Queueing System, Server Breakdowns. 

 

I. INTRODUCTION 

 

We consider two-phase M/Ek/1 queuing system with 

N-policy and server breakdowns that operates as 

follows. Customers arrive individually according to a 

Poisson process and receive batch service in first 

phase and individual service in second phase. The 

server is turned off each time the system empties, as 

and when the queue length reaches or exceeds N 

(threshold) batch service starts. Before the batch 

service, the system requires a dormant period 

followed by a random startup time for pre-service. 

When the number of customers in the queue is less 

than or equal to M-1, the server is in vacation, when 

the number of customers in the queue is greater than 

or equal to M and up to N-1 server is in dormant  and 

when the number of customers become N it goes to a 

startup period for pre service. Arrivals during pre-

service are also allowed to enter the batch. As soon as 

the startup period is over the server starts the batch 

service followed by individual service to all 

customers in the batch. During both batch as well as 

individual services, the server may breakdown at any 

time according to a Poisson process and if the server 

fails, it is immediately sent for repair. After repair the 

server resume service. 

 

A practical problem related to a manufacturing 

system is presented for illustration purpose. Consider 

a production system where the items are produced on 

order. The orders are collected as and when their 

number reaches M the production process alerts and 

their number reaches N the production process gets 

initiated. Service may require two phases, such as 

preliminary checking of orders followed by the actual 

production. When there are no orders the production 

process is stopped and is resumed only when N orders 

accumulate. Before each production cycle the 

machine may need certain startup time and it may 

breakdowns due to some unforeseen problems. 
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Krishna and Lee (1990) first introduced the two-

phase M/M/1 queueing system. Doshi (1991) studied 

the two-phase M/G/1 queueing system. Selvam and 

Sivasankaran (1994) introduced the two-phase 

queueing system with server vacations. Kim and 

Chae (1998) analysed the two-phase queueing system 

with N-policy. Wang (1995) first proposed an 

Markovian queueing system under the N-Policy with 

server breakdowns. Wang (1997) and Wang et al. 

(1999) extended the model proposed by Wang (1995) 

to M/Ek/1 and M/H2/1 queueing systems respectively. 

Ke (2003) presented the optimal control policy in 

batch arrival queue with server breakdowns and 

multiple vacations. Wang and Li (2008) studied a 

retrial queue with general retrial times, Bernoulli 

vacations, setup times and two-phase service. 

Anantha Lakshmi et. al. (2008) presented the optimal 

strategy analysis of an N-policy bulk arrival queueing 

system with a removable and non-reliable server.  

Jau-Chuan Ke (2006) derived the p.g.f. of the number 

of customers for the (m, N) policy M/G/1 queueing 

systems with an unreliable server and single vacation. 

He also studied other important system 

characteristics. Vasanta Kumar and Chandan (2007) 

and (2008) presented the optimal control policy  of 

two-phase M/M/1 and M/Ek/1 queueing systems with 

N-policy. Vasanta Kumar et al. (2011) studied Two-

phase N-policy Mx/M/1 queueing system with startup 

times and server breakdowns and also some of the 

system performance measures are derived. 

This paper extends the work of Anantha Lakshmi et 

al. (2008) to an N-policy two-phase M/M/1 queueing 

system with startup times and server breakdowns. 

 

The objectives of this paper are: 

(i) to establish the state equations to obtain the 

steady state probability distribution of the 

number of units in the system. 

(ii) to derive system characteristics such as 

expected number of units in the system when 

the server is in vacation, in setup, at batch 

service, at individual service and breakdown 

states respectively and expected system length. 

1. 2 THE SYSTEM AND ASSUMPTIONS 

Customers are assumed to arrive according to a 

Poisson process with mean arrival rate 𝜆 and join the 

batch queue. When the batch size reaches M (≥1and 

≤N-1 ) the server will spend a random dormant 

period which is assumed to follow an exponential 

distribution with mean 1/𝜃1and  when it reaches to 

N  the server will spend a random startup time for 

pre-service, which is assumed to follow an 

exponential distribution with mean 1/𝜃. As soon as 

the period of startup is over, the server begins batch 

service in first phase. While serving in batch queue, 

the server may breakdown at any time with a Poisson 

breakdown rate ξ1. When the server fails it is 

immediately repaired at a repair rate ξ2, where the 

repair times are exponentially distributed .On 

completion of batch service the server proceeds to 

the second phase to serve all customers in the batch 

individually. Individual queue is served in FIFO 

mode. Batch service time is assumed to be 

exponentially distributed with mean 1/ 𝛽  and is 

independent of batch size. Individual service times 

are also assumed to be exponentially distributed with 

mean 1/𝜇 . While serving in individual queue, the 

server may breakdown at any time with a Poisson 

breakdown rate 𝛼 1. When the server fails it is 

immediately repaired at a repair rate𝛼2, where the 

repair times are exponentially distributed. After 

repair the server immediately resumes service in 

individual queue. On completion of individual 

service the server returns to the batch queue to serve 

the customers who have arrived. If the customers are 

waiting, the server starts the cycle by providing them 

batch service followed by individual service. If no 

customer is waiting, the server takes a vacation and 

return from vacation only after M customers 

accumulate in the batch queue and start pre-service 

work. 
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II.  STEADY – STATE ANALYSIS 

In steady – state the following notations are used. 

P0, i, 0 = The probability that there are i customers in the batch queue when the server is on vacation, 

where i = 0,1k,2k,3k,…,(M-1)k 

P1, i, 0 = The probability that there are i customers in the batch queue when the server is in dormant 

period, where i= Mk,(M+1)k,……(N-1)k 

P2, i, 0 =  The probability that there are i customers in the batch queue when the server is doing pre-

service (startup work), where i = Nk, (N+1)k, (N+2)k,…………. 

P3, i, 0 = The probability that there are i customers in the batch queue when the server is in batch 

service where i = 1k,2k,3k,…   

P4,i,0 = The probability that there are i customers in batch queue when the server is working but 

found to be broken down, where i = 1k,2k,3k,…   

P5,i,j       =    The probability that there are i customers in the batch queue and j customers in individual queue 

when the server is in individual service, where i = 0,1,2,… and j = 1k,2k,3k,…   

P6,i,j       =   The probability that there are i customers in the batch queue and j customers in individual queue 

when the server is working but found to be broken down, where i = 0, 1k,2k,3k,…  and j = 

1k,2k,3k,…   

The steady-state equations satisfied by the system size probabilities are as follows: 

𝜆𝑝0,0,0 = µ𝑘𝑝5,0,𝑘 (1) 

 

𝜆𝑝0,𝑖,0 = 𝜆𝑝0,𝑖−𝑘,0 ; 𝑘 ≤ 𝑖 ≤ (𝑀 − 1)𝑘.                        (2) 

(𝜆 + 𝜃1)𝑝1,𝑀𝑘,0 = 𝜆𝑝0,(𝑀−1)𝑘,0.                                              (3) 

(𝜆 + 𝜃1)𝑝1,𝑖,0 = 𝜆𝑝1,𝑖−𝑘,0;   𝑖 = (𝑀 + 1)𝑘, (𝑀 + 2)𝑘, … (𝑁 − 1)𝑘                                (4) 

(𝜆 + 𝜃)𝑝2,𝑁𝑘,0 = 𝜆𝑝0,(𝑁−1)𝑘,0                         (5) 

(𝜆 + 𝜃)𝑝2,𝑖,0 = 𝜆𝑝2,(𝑖−𝑘),0; 𝑖 = 𝑁𝑘, (𝑁 + 1)𝑘, …                          (6) 

(𝜆 + 𝛽 + 𝜉1)𝑝3,𝑖,0 = 𝜆𝑝3,𝑖−𝑘,0 + 𝜇𝑘 𝑝5,𝑖,𝑘 + 𝜉2𝑝4,𝑖,0 ; 𝑘 ≤ 𝑖 ≤ (𝑁 − 1)𝑘.        (7) 

(𝜆 + 𝛽 + 𝜉1)𝑝3,𝑖,0 = 𝜆𝑝3,𝑖−𝑘,0 + 𝜇𝑘 𝑝5,𝑖,𝑘 + 𝜉2𝑝4,𝑖,0 + 𝜃𝑝2,𝑖,0; 𝑖 = 𝑁𝑘, (𝑁 + 1)𝑘, … (87) 

 

(𝜆 + 𝜉2)𝑝4,𝑖,0 = 𝜆𝑝4,𝑖−𝑘,0 + 𝜉1𝑝3,𝑖,0 ; 𝑖 = 𝑘, 2𝑘, …                                              (9) 

 

(𝜆 + 𝛼1 + µ𝑘)𝑝4,0,𝑗 = µ𝑘𝑝4,0,𝑗+1 + 𝛽𝑝2,𝑗,0 + 𝛼2𝑝5,0,𝑗; 𝑗 ≥ 𝑘.                       (10) 

 

(𝜆 + 𝛼1 + µ𝑘)𝑝5,𝑖,𝑗 = µ𝑘𝑝5,𝑖,𝑗+𝑘 + 𝜆𝑏1𝑝5,𝑖−𝑘,𝑗 + 𝛼2𝑝6,𝑖,𝑗; 𝑖 = 𝑘, 2𝑘, … , 𝑗 ≥ 𝑘.                         (11) 



Volume 2 | Issue 2 | | March-April-2017 | www.ijsrcseit.com  1186 

 

(𝜆 + 𝛼2)𝑝6,0,𝑗 = 𝛼1𝑝5,0,𝑗; 𝑗 ≥ 𝑘.                                                                                        (12) 

 

(𝜆 + 𝛼2)𝑝6,𝑖,𝑗 = 𝛼1𝑝5,𝑖,𝑗 + 𝜆𝑝6,𝑖−𝑘,𝑗; 𝑖 = 𝑘, 2𝑘, … , 𝑗 ≥ 𝑘. (13)  

The following probability generating functions are defined 

 

𝐺0(𝑧) = ∑ 𝑝0,𝑖,0𝑧𝑖(𝑀−1)𝑘
𝑖=0 ,𝐺1(𝑧) = ∑  𝑝1,𝑖,0𝑧𝑖(N−1)k

𝑖=𝑀𝑘 , 

 

𝐺2(𝑧) = ∑  𝑝2,𝑖,0𝑧𝑖∞
𝑖=𝑘  ,    𝐺3(𝑧) = ∑  𝑝3,𝑖,0𝑧𝑖∞

𝑖=𝑘 , 𝐺4(𝑧) = ∑  𝑝4,𝑖,0𝑧𝑖∞
𝑖=𝑘  

 

𝐺5(𝑧, 𝑦) = ∑ ∑  𝑝5,𝑖,𝑗𝑧𝑖∞
𝑗=𝑘 𝑦𝑗∞

𝑖=0 ,𝐺5(𝑧, 𝑦) = ∑ ∑  𝑝6,𝑖,𝑗𝑧𝑖∞
𝑗=𝑘 𝑦𝑗∞

𝑖=0

 

Rj  (z) = ∑

𝑖=0
∞

 P5, i, j z i, |z| ≤ 1  and Sj (z) = ∑

𝑖=0
∞

P6, i, j z
i, |z| ≤1. 

 

 

Multiplication of equation (2) by zi and adding over i (1 ≤i≤M-1) gives 

                     Go (z) = 
(1−𝑧𝑀𝑘)

(1−𝑧)
 P0, 0, 0.  (14) 

Multiplication of equations (3 ) and (4) by zi and adding over i (i≥N) gives 

                    G1 (z) = 
𝜆(𝑍𝑀𝑘−𝑍𝑁𝑘(

𝜆

𝜆+𝜃1
)

(𝑁−𝑀)𝑘
)

(𝜆(1−𝑧𝑘)+𝜃1)
 P0, 0, 0. (15) 

Multiplication of equations (5) and (6) by zi and adding over i (i ≥N) gives 

(𝜆 (1-𝑧𝑘) +𝜃 )G2 (z)=  (
𝜆

𝜆+𝜃1
)

(𝑁−𝑀)𝑘

ZNk P0, 0, 0  .                                          (16) 

Multiplication of equations (7) and (8) by zi and adding over i (i ≥1) gives 

(𝜆 (1-𝑧𝑘) +𝛽 + ξ1) G3 (z)  =  ξ2 G4 (z)  +𝜇kS1 (z) + 𝜃 G2 (z) - 𝜆 P0, 0, 0. (17) 

Multiplication of equation (9) by zi and adding over i (i≥1) gives 

(𝜆 (1-𝑧𝑘)  + ξ2) G4 (z)  = ξ1 G3 (z) .  (18) 

Multiplication of equation (11) by zi and adding over i (i≥1)  

and using (10) gives 

(𝜆 (1-𝑧𝑘) +𝛼1+𝜇𝑘) Rj (z)=𝜇𝑘Rj+k (z) +  𝛼2 Sj (z) + 𝛽 P3, j, 0. (19) 

Multiplication of this equation by yj and adding over j (j≥1) gives 

 [𝜆y (1-𝑧𝑘)+𝛼1y -𝜇𝑘 (1-y)] G5 (z, y) = y𝛼2 G6 (z,y) +𝛽y G3 (y) - 𝜇𝑘y R1(z)...(20)   

Multiplication of equation (13) by zi and adding over i (i≥1) 

 and using (12) gives 

                    (𝜆 (1-𝑧𝑘) +𝛼2) Sj (z) = 𝛼1 Sj (z). (21) 

Multiplication of this equation by yj and adding over j (j≥1) gives 

                    (𝜆 (1-𝑧𝑘) +𝛼2) G6 (z ,y) = 𝛼1G5 (z, y ). (22) 

The total probability generating function G(z, y) is given by 

G (z ,y) = G0 (z) + G1 (z) + G2 (z) + G3 (z) + G4 (z) + G5 (z ,y) + G6 (z ,y)   

The normalizing condition is 

G (1,1) =G0(1)+G1(1)+ G2 (1) + G3(1) + G4 (1)+G5(1,1) + G6(1, 1) =  1 . (23) 

From equations (14) to (22)  

     

G0 (1)   =  Mk P0, 0,0  ,  (24) 
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G1 (1)   = 
𝜆

𝜃1
 (1 − (

𝜆

𝜆+𝜃1
)

(𝑁−𝑀)𝑘
)P0, 0, 0  , (25) 

G2 (1)   =  



(

𝜆

𝜆+𝜃1
)

(𝑁−𝑀)𝑘

 P0, 0, 0  . (26) 

 

G3 (1)  = 


1
[𝜇𝑘𝑅1(1) + ((

𝜆

𝜆+𝜃1
)

(𝑁−𝑀)𝑘

− 1) 𝜆𝑃0,0,0]. (27) 

G4 (1)  = 
𝜉1

𝜉2
G3 (1)  .   (28) 

G5 (1 ,1)  = 
(𝛼2𝛽𝐺31(1)−𝜆𝛼2𝜇𝑘𝑅1

1(1))

(𝜇𝑘𝛼2−𝜆𝑘(𝛼1+𝛼2))
  .   (29) 

and  G6 (1,1) = 
𝛼1

𝛼2
 G5(1,1)  , (30) 

where  P0, 0, 0 = 
[1−

𝜆

𝜇𝑘
(1+

𝛼1

𝛼2
)−

𝜆

𝛽
(1+

𝜉1

𝜉2
)]

(𝑀+
𝜆

𝜃1
−

𝜆

𝜃1
(

𝜆

𝜆+𝜃1
)

(𝑁−𝑀)𝑘
+

𝜆

𝜃
(

𝜆

𝜆+𝜃1
)

(𝑁−𝑀)𝑘
)

  . 

Normalizing condition (23) gives R1(1) 

 

Substituting the value of R1 (1) in (27), (28), (29) and (30) gives G2 (1), G3(1), G4 (1), G5 (1,1),  G6 (1,1) .                  

  

Under steady state conditions, let P0, P1, P2, P3,P4 , P5 and P6 be the probabilities that the server is in 

vacation, Dormant, startup, in batch service, in batch service  with break down, in individual service and 

breakdown states respectively. Then, 

 

          P0 = G0 (1) = Mk P0, 0, 0, 

          P1 = 
𝜆

𝜃1
 (1 − (

𝜆

𝜆+𝜃1
)

(𝑁−𝑀)𝑘
)P0, 0, 0  

          P2 = 



(

𝜆

𝜆+𝜃1
)

(𝑁−𝑀)𝑘

 P0, 0, 0  

          P3 = 


1
[𝜇𝑘𝑅1(1) + ((

𝜆

𝜆+𝜃1
)

(𝑁−𝑀)𝑘

− 1) 𝜆𝑃0,0,0] . 

          P4 = 
𝜉1

𝜉2
G3 (1) and so on           

 

III. EXPECTED NUMBER OF CUSTOMERS IN THE SYSTEM 

Using the probability generating functions expected number of customers in the system at different states 

are presented below. 

Let L0, L1, L2, L3, L4,L5 and L6 be the expected number of customers in the system when the server is in 

idle, Dormant, startup, batch service, batch service, break down in batch service, individual service and 

breakdown states respectively which can be obtained as G0
1 (1), G1

1 (1),.. G6
1 (1,1) 

In that case 

L0 = G0
1 (1) = 

𝑀(𝑀−1)𝑘

2
 P0, 0, 0  . (31) 

L1==G1
1 (1) = [

𝑀𝜆1

𝜃1
+ (

𝜆

𝜃1
)

2
(1 − (

𝜆

𝜆+𝜃1
))

𝑁−𝑀−1

−
𝜆

𝜃1
(𝑁 − 1) (

𝜆

𝜆+𝜃1
)

𝑁−𝑀

] 𝑘P0,0,0   (32) 

L2=G2
1(1) = 

𝜆

𝜃
(

𝜆

𝜆+𝜃1
)

(𝑁−𝑀)𝑘

(
𝜆+𝑁𝜃

𝜃
) 𝑃0,0,0. (33) 

similarly 

L3 = G3
1 (1)    

 L4 =  G4
1 (1)                                                         (34) 
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L5 = G5
1 (1 ,1)    

 (35)   

L6= G6
1 (1 ,1)  

                           (36)   

 

Thus the expected number of units in the system 

 

L(N)=L0+ L1+ L2+ L3+ L4+ L5+ L6                                      (37) 

 

IV. CHARACTERISTIC FEATURES OF THE SYSTEM 

In this section, we obtain the expected system length when the server is in different states. Let 

𝐸0, 𝐸1, 𝐸2, 𝐸3, 𝐸4 𝑎𝑛𝑑 𝐸5denote the expected length of vacation period,  dormant period, startup period, 

batch service period , batch service breakdown period, individual service period, and waiting period for 

repair during individual service respectively. Then the expected length of a busy cycle is given by

 

𝐸𝑐 = 𝐸0 + 𝐸1 + 𝐸2 + 𝐸3 + 𝐸4 +  𝐸5 +  𝐸6.

 

 

The long run fractions of time the server is in different states are as follows: 
𝐸0

𝐸𝑐
= 𝑝0,  

𝐸1

𝐸𝑐
= 𝑝1, 

𝐸2

𝐸𝑐
= 𝑝2,  

𝐸3

𝐸𝑐
= 𝑝3, 

𝐸4

𝐸𝑐
= 𝑝4, 

𝐸5

𝐸𝑐
= 𝑝5, 

𝐸6

𝐸𝑐
= 𝑝6 

Expected length of vacation period is given by 

𝐸0 =
𝑁

𝜆
 .  

Hence,  

𝐸𝑐 =
1

(𝜆𝑝0,0,0)
 .  

 

V.  COST FUNCTION 

In this section, we determine the long run average cost function for the two- phase M/M/1, N-policy 

queue with server break downs. It is as follows 

Let T (N) be the average cost per unit of time, then 

 

𝑇(𝑁) = 𝐶ℎ𝐿(𝑁) + 𝐶𝑜 (
𝐸3

𝐸𝑐
+

𝐸5

𝐸𝑐
) + 𝐶𝑚 (

𝐸𝑆

𝐸𝑐
)+𝐶𝑏1 (

𝐸4

𝐸𝑐
)+𝐶𝑏2 (

𝐸6

𝐸𝑐
)+ 𝐶𝑠 (

1

𝐸𝑐
)

 
                   -𝐶𝑟 (

𝐸0

𝐸𝑐
).        

Where 

𝐶ℎ= Holding cost per unit time for each customer present in the system, 

𝐶𝑜 = Cost per unit time for keeping the server on and in operation, 

𝐶𝑚= Startup cost per unit time, 

𝐶𝑠 = Setup cost per cycle, 

𝐶𝑏1= Break down cost per unit time for the unavailable server in batch service mode,  
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𝐶𝑏2= Break down cost per unit time for the unavailable server in individual service mode, 

𝐶𝑟= Reward per unit time as the server is doing secondary work in vacation. 

 

A computational algorithm translated in MATLAB is used to obtain the numerical values. 

 

VI. SENSITIVITY ANALYSIS 

 

In order to verify the efficiency of our analytical 

results, we perform numerical experiment by using 

MATLAB. The variations of different parameters 

(both monetary and non-monetary) on the mean 

number of jobs in the system and total expected cost 

are shown. 

Parameters for which the model is relatively sensitive 

would require more attention of researchers, as 

compared to the parameters for which the model is 

relatively insensitive or less sensitive.  

We perform the sensitivity analysis by fixing 

Non –monetary parameters as 

λ=0.5, µ=8,α1=0.2,α2=0.5,ξ1=0.2,ξ2=0.3,θ=6,β=12 

and 

monetary parameters as 

Cr=15,Cb1=50,Cb2=75,Cm=200,Ch=5,Cs=1000; 

The values are shown in tables 1-16 in Appendix 

and summary is stated here 

• With increase in values of λ:Mean number of 

customers in the system and expected costs are 

increasing.  

• With increase in values of µ:Mean number of 

customers in the system are increasing, 

expected cost is decreasing. 

• With increase in values of α1:Mean number of 

customers in the system is increasing and 

expected cost is increasing. 

• With increase in values of α2,: both mean 

number of customers in the system and 

expected cost are decreasing. 

• With increase in values of ξ1, :, Mean number 

of customers in the system is increasing and 

expected cost is increasing. 

• With increase in values of ξ2: Mean number of 

customers in the system is increasing and 

expected cost is also increasing. 

• With increase in values of θ :Mean number of 

customers in the system and expected cost 

are decreasing. 

• With increase in values of β: Mean number of 

customers in the system is increasing and 

expected cost is decreasing. 

• With increase in values of Cr: Mean number of 

customers in the system is slightly increasing 

and expected cost is decreasing.  

• With increase in values ofCb1: Mean number of 

customers in the system is increasing and 

expected cost is insensitive. 

• With increase in values ofCb2:mean number of 

customers in the system are decreasing and 

expected cost is slightly increasing. 

• With increase in values of Cm : mean number 

of customers in the system and expected cost 

are   increasing.  

• With increase in values ofCo: Mean number of   

customers in the system is decreasing and 

expected cost is increasing.  

• With increase in values of Ch  :mean number of 

customers in the system are decreasing and 

expected cost is increasing.  

• With increase in values of Cs : mean number of 

customers in the system and expected cost are 

increasing. 

 

VII. CONCLUSION 

 

Two-phase (M, N) -Policy of M/Ek/1 queueing 

systems with server dormant, start up and 

breakdowns is studied. Explicit expressions for the 

steady state distribution of the number of customers 
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in the system are obtained and also explored the 

impact of various parameters on system constants.  
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Appendix 

 

Effect of variation in the non-monetary parameters 

(i)Variation in λ 

Table 1: Effect of λ on  expected system length and expected cost   

𝝀 0.9 1.3 1.7 2.1 2.5 2.9 

L(N*) 5 6 6 7 7 8 

T(N*) 51.58 67.7 84.6 96.12 100.5 112.03 

(ii)Variation in μ 

Table 2: Effect of μ on  expected system length and expected cost   

μ 9 10 11 12 13 14 

L(N*) 3 4 4 4 5 5 

T(N*) 
38.01 37.04 36.45 36.02 35.26 33.9 

 

(iii) Variation in α1 

Table 3: Effect of α1 on expected system length and expected cost    

α1 0.205 0.21 0.215 0.220 0.225 0.230 

L(N*) 4 4.1 4. 2 4.3 4.3 4.4 

T(N*) 33.92 33.94 33.96 34.1 34.1 34.6 

 (iv)Variation in α2 

Table 3.4: Effect of α2 on  expected system length and expected cost    

 

 

 

 

 

 

 

 

α2 3.1 3.2 3.3 3.4 3.5 3.6 

L(N*) 4 4 4 3.9 3.89 3.6 

T(N*) 33.87 33.87 33.86 33.86 33.86 33.85 
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(v)Variation in ξ1 

Table 5: Effect of ξ1 on  expected system length and expected cost    

ξ1 0.3 0.4 0.5 0.6 0.7 0.8 

L(N*) 4 4 4.1 4.12 4.19 4.78 

T(N*) 33.87 33.91 34.00 34.16 34.39 34.7 

 (vi)Variation in ξ2 

Table 3.6: Effect of ξ2 on  expected system length and expected cost    

ξ2 0.305 0.31 0.315 0.320 0.325 0.330 

L(N*) 4 4 3.94 3.89 3.84 3.62 

T(N*) 33.92 33.91 33.91 33.91 33.91 33.91 

(vii) Variation in θ 

Table 7: Effect of θ on  expected system length and expected cost    

θ 7 8 9 10 11 12 

L(N*) 4 4 4 3.94 3.91 3.65 

T(N*) 33.72 33.64 33.58 33.54 33.51 32.89 

 

viii)Variation in β 

Table 8: Effect of β on expected system length and expected cost    

Β 12.05 12.10 12.15 12.20 12.25 12.30 

L(N*) 4 4 4 4.12 4.15 4.29 

T(N*) 33.92 33.914 33.91 33.91 33.91 33.91 
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Effect of variation in the monetary parameters 

x)Variation in Cr 

Table 10: Effect of Cr on expected system length and expected cost    

Cr 17 19 21 23 25 27 

L(N*) 4 4 4 4.02 4.04 4.1 

T(N*) 32.06 29.97 28.04 26.02 24.03 22.36 

xi)Variation in Cb1 

Table 11: Effect of Cb1 on  expected system length and expected cost    

Cb1 52 54 56 58 60 62 

L(N*) 4 4 4 3.42 3.41 3.11 

T(N*) 33.88 33.88 33.88 33.88 33.88 33.88 

 
Xii) Variation in Cb2 

Table 12: Effect of Cb2on  expected system length and expected cost    

Cb2 80 85 90 95 100 105 

L(N*) 4 3.95 3.94 3.86 3.74 3.6 

T(N*) 33.87 33.89 33.91 33.92 33.92 33.93 

xiii) Variation in cm 

Table 13: Effect of Cm on  expected system length and expected cost    

 

 

 

 

 

 

 

 

Cm 215 230 245 260 275 290 

L(N*) 4.06 4.14 4.28 4.89 4.91 4.94 

T(N*) 33.93 33.98 34.04 34.09 34.15 34.20 
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xiv)Variation in Co 

Table 14: Effect of coon expected system length and expected cost    

Co 55 60 65 70 75 80 

L(N*) 4.34 4.15 4 3.94 3.86 3.46 

T(N*) 34.00 34.12 34.15 34.17 34.50 34.62 

xv)Variation in ch 

Table 15: Effect of Ch on expected system length and expected cost    

Ch 6 7 8 9 10 11 

L(N*) 4 3 3 3 3 3 

T(N*) 39.70 41.18 44.38 49.36 50.16 52.8 

xvi)Variation in cs 

Table 16: Effect of cs on expected system length and expected cost    

Cs 1100 1200 1300 1400 1500 1600 

L(N*) 4 4 5 5 6 6 

T(N*) 32.23 36.02 39.06 41.83 43.64 45.39 

 

 


