
CSEIT1723207 | Received : 15 May 2017 | Accepted : 31 May 2017 | May-June-2017 [(2)3: 661-669]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2017 IJSRCSEIT | Volume 2 | Issue 3 | ISSN : 2456-3307

661

Selecting a methodology in Multi-Agent Systems –

A Practical and Quasi-Technical Analysis of Agent-based, Object

Oriented and Knowledge Engineering-based methodologies.
K. Mugoye, S. Ruoro

Department of Computer Science, Maseno University, Private Bag, Maseno, Kenya

ABSTRACT

As recognition of agents’ technology registers steady improvement over years, there is an emergent need for

practical methods for developing agent applications. Agent-Oriented Software Engineering (AOSE) methodologies

were proposed to develop complex distributed system grounded upon the agent paradigm. Initially, the challenge

was the lack of mature development methodologies for agent-based systems, efforts in the right direction to address

the problem resulted in the proliferation of methodologies, which presents a new challenge that is, practitioners are

challenged in that they need to select a methodology from a large number of existing methodologies. The literature

in this paper suggests a necessity to the understanding of the classification of AOSE methodologies. We advocate

for a view that is in twofold, first, practitioners need to first understand in a wide sense the categories of AOSE

methodologies, so as to correctly link it to their intended agent solution, secondly, identify a methodology

considering the availability of support features such as maturity, availability of documentation and support tools.

Keywords: Multi-Agent System, Agent Based Methodologies, Artificial Intelligence

I. INTRODUCTION

The previous two decades has seen a lot of

improvement in intelligent software agent research.

Originally, single agent then sophisticated single agent

in complex environments to multi-agent system (MAS)

organizations. Extensive research and improvements in

this field over time has enabled today’s agents to

perform a wide variety of human-like tasks such as

learning, reasoning, negotiating, self-organizing and

trusting each other, just to mention.

It is quite unfortunate that very few practical MAS

systems have been deployed after such an extensive

period of intensive research and development.

Researchers in Artificial Intelligence admit to this fact;

It was noted only 12 years ago that ―One of the most

fundamental obstacles to large-scale take-up of agent

technology is the lack of mature software development

methodologies for agent-based systems‖ [3].

Scholars seem to be in consensus that analysis and

design of agent-based systems requires an agent-

oriented software engineering (AOSE) methodology

(e.g. [3]). Efforts in addressing the problem of lack of

mature software development methodologies seem to

bear fruits and to date, the field has progressed

considerably, resulting in the presence of many mature

AOSE methodologies [4, 5] including MaSE [6] (and

its successor O-MaSE [7]), Tropos [8], Gaia [9],

Prometheus [10], INGENIAS [11, 12], ADEM (and its

modeling language AML [13]), and PASSI [15].

Indeed, the proliferation of methodologies offers rich

resources for developers to draw on, but can also be a

hindrance to progress if their commonalities,

divergences, and application are not readily understood.

Practitioners are challenged in that they need to select a

methodology from a large number of existing

methodologies. This has motivated work on

comparisons of methodologies; with a detailed

discussion of existing methodologies given in section 2

where related research is examined. We argue that

practitioners need to first understand in a wide sense

Volume 2 | Issue 3 | May-June-2017 | www.ijsrcseit.com

 662

the categories of AOSE methodologies, so as to

correctly link it to the solution their problem require,

and second identify a methodology considering the

availability of support features e.g. maturity,

Availability of documentation and tools.

This paper seeks to provide insights to practitioners on

how to arrive at a methodology. It presents a

comparison of three methodologies, Gaia [9], PASSI

[15] and MAS-CommonKADS [30]. Each

methodology is drawn from a category based on the

approach it adopts as agent-based, object-oriented, and

knowledge engineering-based, shown in section 2. The

choice of these methodologies was informed by

considering maturity, availability of documentation,

and availability of tool support for each category,

except in cases where only one methodology is present

in a category.

II. CLASSIFICATION OF AGENT ORIENTED

METHODOLOGIES

Agent-oriented methodologies have several roots. They

are classified according to the approach or discipline

upon which they are based. A common property of

these methodologies is that they are developed based

on the approach of extending existing methodologies to

include the relevant aspects of agents. They are broadly

classified into three categories: agent-based

methodologies, object oriented methodologies and their

extensions, and knowledge engineering-based

methodologies [4]. Figure 1 illustrates the

classifications of agent-oriented methodologies.

Figure 1. Clasification of agent-Oriented

methodologies [4]

A. Agent-based methodologies

There are several methodologies that belong to this

category such as: Gaia [9], HLIM [16], Tropos [1],

Prometheus [18], SODA [19], Styx [20], and

Cassiopeia [21]. The developers of such methodologies

urge that the agent concept should be established

without dependency on other traditional

methodologies, such as object-oriented methodologies.

The main reason is the inherent differences between the

two entities; agents, and objects. This is because agents

have a higher level of abstraction than objects. Object-

oriented approaches cannot offer the same properties as

agents do. They also fail to properly capture the

autonomous behavior of agents, interactions between

agents, and organizational structures [20]. In fact, the

notions of autonomy, flexibility, and proactiveness can

hardly be found in traditional object-oriented

approaches [34]. As a result, object-oriented

methodologies generally do not provide techniques to

model the intelligent behaviour of agents [33].

Therefore, there need to be software engineering

methodologies, which are specially tailored to the

development of agent-based systems.

B. Object oriented-based methodologies

(Extensions of object-oriented methodologies): These

methodologies belong to a category, which either

extend existing object-oriented methodologies or adapt

them to the aim of agent-oriented software engineering.

The examples of such methodologies are ODAC [22],

MaSE [23], MASSIVE [24], DESIRE [25], AAII [26],

AOMEM [27], AOAD [28] and MASB [29]. Some

researchers present several reasons for following this

approach. Firstly, the agent-oriented methodologies,

which extend the object-oriented approach, can benefit

from the similarities between agents and objects.

Secondly, they can capitalize on the popularity and

maturity of object-oriented methodologies. In fact,

there is a high chance that they can be learnt and

accepted more easily. Finally, several techniques such

as use cases and class responsibilities card (CRC),

which are used for object identification can be used for

agents with a similar purpose (i.e. agent identification)

[31].

C. Knowledge Engineering-based methodologies

(Extensions of Knowledge Engineering (KE)

techniques): There are, however, some aspects of

agents that are not addressed in object-oriented

methodologies. For instance, object-oriented

methodologies do not define techniques for modeling

the mental states of agents. In addition, the social

relationship between agents can hardly be captured

Volume 2 | Issue 3 | May-June-2017 | www.ijsrcseit.com

 663

using object oriented methodologies. These are the

arguments for adopting KE methodologies for agent-

oriented software engineering. They are suitable for

modeling agent knowledge because the process of

capturing knowledge is addressed by many KE

methodologies [30]. Additionally, existing techniques

and models in KE such as ontology libraries, and

problem-solving method libraries can be reused in

agent-oriented methodologies. Examples of such

methodologies are MASCommonKADS [30] and

CoMoMAS [32].

D. The Gaia Methodology

The Gaia methodology [9] was developed for the

analysis and design of agent systems and was extended

to support open multi-agent system in 2003 by

Zambonelli et al. Gaia supports both levels of micro

and macro development of agent systems. The micro

level relates to the agent structure while the macro level

relates to the agent society and organizational structure.

It includes an analysis and design phase but does not

explicitly support an implementation phase.

Gaia starts with the analysis phase as is given in figure

2. It aims to collect and organize the specification,

which is the basis for the design of the computational

organization. It then continues with the design phase,

which aims to define the system’s organizational

structure. The definition is in terms of the system’s

topology and control system in order to identify the

agent model and the service model. Gaia consists of

two main phases: the analysis phase and design phase.

The analysis phase is the set of requirements that are

identified. It aims to understand the system and its

structure. It includes the environmental model,

preliminary role model, preliminary interaction model,

and organizational rules model.

Figure 2. Gaia Methodology Models

The environmental model aims to make the

characteristics of the environment explicit in which the

multi-agent system will be engaged.

The preliminary role model specifies the key roles in

the system and describes them in terms of permissions

and responsibilities.

The preliminary interaction model captures the

dependencies and relations between roles by means of

protocol definitions. Gaia is only concerned with the

society level; it does not capture the internal aspects of

agent design.

The organizational rules model captures the basic

functionalities required by the organization, as well as

the basic interactions and roles.

The design phase includes organizational structure,

agent model, role model, interaction model, and service

model.

The organizational structure captures the catalogue’s

organizational patterns and involves considering: (i) the

organizational efficiency, (ii) the real-world

organization (if any) in which the MAS is situated, and

(iii) the need to enforce the organizational rules.

The role and interaction models are the completion of

the preliminary role and interaction model. This is

based upon the adopted organizational structure and

Volume 2 | Issue 3 | May-June-2017 | www.ijsrcseit.com

 664

involves separating, whenever possible, the

organizational-independent aspects (detected from the

analysis phase) from the organizational-dependent ones

(derived from the adoption of a specific organizational

structure). This separation promotes a design-for-

change perspective by separating the structure of the

system (derived from a contingent choice) from its

goals (derived from a general characterization).

The agent model is concerned with identifying the

agent classes that will make up the system and the

agent types that will be instantiated from these classes.

The service model is concerned with identifying the

services associated with a role. It identifies the main

services intended as coherent blocks of activity in

which agents will engage. These services are required

to realize the agent’s roles and their properties.

E. The Passi Methodology

It was developed in 2002 by Cossentino and Potts, is an

object oriented-based methodology. PASSI is

composed of five models that address different design

concerns and twelve steps in the process of building a

model. It uses UML as the modeling language because

it is widely accepted both in the academic and

industrial worlds. Its extension mechanisms facilitate

the customized representation of agent-oriented designs

without requiring a completely new language.

Extension mechanisms here refer to constraints, tagged

values, and stereotypes. The models and phases of

PASSI are (see figure 3):

Figure 3. Models and phases of the PASSI

methodology

 System requirements model is an anthropomorphic

model of the system requirements in terms of agency

and purpose. Developing this model involves four steps:

1. Domain Description: is a functional description of

the system composed of a hierarchical series of use

case diagrams. Scenarios of the detailed use case

diagrams are then explained using sequence diagrams.

2. Agent Identification: The separation of responsibility

into agents, represented as stereotypical UML packages.

In this step, one or more use cases are grouped into

stereotyped packages to form agent identification

diagram.

3. Role Identification: The use of sequence diagrams to

explore each agent's responsibilities through role-

specific scenarios.

4. Task Specification: Specification through activity

diagrams of the capabilities of each agent.

Agent society model is a model of the social

interactions and dependencies among the agents

involved in the solution. Developing this model

involves three steps in addition to a part of the previous

model:

1. Role Identification: See the System Requirements

Model.

2. Ontology Description: The use of class diagrams and

Object Constraint Language (OCL) constraints to

describe the knowledge ascribed to individual agents

and the pragmatics of their interactions.

3. Role Description: The use of class diagrams to show

distinct roles played by agents, the tasks involved that

the roles involve, communication capabilities and inter-

agent dependencies.

4. Protocol Description: The use of sequence diagrams

to specify the grammar of each pragmatic

communication protocol in terms of speech-act

performatives like in the AUML approach [2].

Agent implementation model is a model of the solution

architecture in terms of classes and methods, the

development of which involves the following steps:

1. Agent Structure Definition: The use of conventional

class diagrams to describe the structure of solution

agent classes.

2. Agent Behaviour Description: The use of activity

diagrams or state charts to describe the behaviour of

individual agents.

Code model is a model of the solution at the code level

requiring the following steps to produce:

1. Code Reuse Library: A library of class and activity

diagrams with an associated reusable code.

2. Code Completion Baseline: The source code of the

target system.

Deployment model is a model of the distribution of the

parts of the system across hardware processing units

Volume 2 | Issue 3 | May-June-2017 | www.ijsrcseit.com

 665

and their migration between processing units. It

involves one-step:

1. Deployment Configuration: The use of deployment

diagrams to describe the allocation of agents to the

available processing units and any constraints on

migration and mobility.

Testing: the testing process has been subdivided into

two different steps:

1. The (single) agent test is devoted to verifying its

behaviour concerning the original requirements of the

system solved by the specific agent.

2. The society test is used for the validation of the

correct interaction of the agents, in order to verify that

they concur in solving problems that need cooperation.

F. The MAS-CommonKADS Methodology

MAS-CommonKADS [30] is one of the methodologies

that are based on the knowledge engineering-based

approach. It is considered an extension of the

CommonKADS methodology [32].It consists of three

main phases: conceptualization, analysis, and design.

These phases comprise of seven models that cover the

main aspects of the development of multi-agent

systems. Figure 4 illustrates the models of the MAS-

Common KADS methodology.

Figure 4. Models and phases of the MAS-common

KADS Methodology

The methodology starts with a conceptualization phase,

which is an informal phase for collecting the user

requirements and obtaining a first description of the

system from the user’s point of view. The use cases

technique is used and the interactions of these use cases

are then formalized with MSC (Message Sequence

Charts). The analysis and design phases define models

as described below. For each model, the methodology

defines the system components (constituents ―entities

to be modeled‖) and the relationships between these

components. The methodology defines a textual

template for describing every constituent and a set of

activities for building every model. This is based on the

development state of every constituent (empty,

identified, described, or validated). These activities

facilitate the management of the project.

The following models represent the extension of

CommonKADS:

Agent model: The agent model specifies the

characteristics of an agent including reasoning

capabilities, skills (sensors/effectors), services, goals,

etc. The agent model plays the role of a reference point

for the other models. An agent is defined as any entity

(human or software) capable of carrying out an activity.

The identification of agents is based on the use cases

diagrams generated in the conceptualization. Such

identification could be augmented in the task model.

Task model: Describes the tasks (goals) that the agents

can carry out. UML Activity diagrams are used to

represent the activity flows and the textual template to

describe the task (name, short description, input and

output ingredients, task structure, etc.).

Expertise model: Describes the knowledge needed by

the agents to carry out the tasks. The knowledge

structure follows the KADS approach. It distinguishes

domain, task, inference, and problem-solving

knowledge. Several instances of this model are

developed for modeling the inferences on the domain,

on the agent itself and on the rest of the agents.

Coordination model: Describes the conversations

between agents. That is agents’ interactions, protocols,

and required capabilities. The coordination model

provides two milestones. The first milestone is

concerned with identifying the conversations and the

interactions. The second milestone is concerned with

improving these conversations with more flexible

protocols such as negotiation, identification of groups,

and coalitions.

The interactions are modeled using the formal

description techniques MSC and SDL (Specification

and Description Language).

Organization model: Describes the organization in

which the MASs are going to be introduced and the

organization of the agent society. It illustrates the static

or structural relationships between the agents. This

Volume 2 | Issue 3 | May-June-2017 | www.ijsrcseit.com

 666

model also describes the agent hierarchy, the

relationship between the agents and their environment,

and the agent society structure. A graphical notation

based on OMT is used to express these relationships,

adding a special symbol in order to distinguish between

agents and objects.

Communication model: Several agents can be involved

in a task. This model helps with modeling the

communicative transactions between systems involved.

These are often human-to-system and system-to-human

communications.

Design model: The design model includes the design of

relevant aspects of the agent network, selecting the

most suitable agent architecture and the agent

development platform. The design model assembles the

agent, task, expertise, coordination, organization and

the communication models. This assembled collection,

is subdivided by the design model to generate three

sub-models:

• Application design: composition or decomposition of

the agents of the analysis, according to pragmatic

criteria and selection of the most suitable agent

architecture for each agent.

• Architecture design: designing of the relevant aspects

of the agent network: required network and

knowledge.

• Platform design: selects the agent development

platform for each agent architecture.

III. THE EFFECTS AND INFLUENCE OF THE

APPLICATION’S DOMAIN

There does seem to be a consensus among scholars and

researchers that the area of application should be

considered when selecting a methodology. This is

particularly apparent when the domain is well

understood and defined upfront when the selection

processes occur.

Our literature depicts that, there exist some aspects of

agents which have been addressed in KE

methodologies that are not addressed in object-oriented

methodologies; For instance techniques for modeling

the mental states of agents. Moreover, the social

relationship between agents can hardly be captured

using object oriented methodologies.

In some instances, the domain of the application has a

clear and obvious influence on the type of methodology

selection. In other cases, the impact seems minimal if

any exists at all. This factor will serve on a case-by-

case basis.

IV. RELATIONSHIP OF THE METHODOLOGIES

AND THE APPLICATION DOMAIN

Relatively simpler agent based system are supported by

one or a simple methodology whereas relatively

complex Agent-based systems may be supported

hybrid or multiple methodologies. We present the view

that the more complex an Agent-based system is, the

more sophisticated the methodology to design such

systems must be. At present, there are no consensus

standards on what methodologies are ideal for what

application domains; and that majority of the studies on

application domains and Agent-based solutions were

used provide a way to gain insights on what attributes

are useful in leading to better design methodologies.

V. ADVANTAGES AND DISADVANTAGES

The best solution to profit from the abilities of agent

orientation is to study the overall of issues on subject,

consider each strengths and weaknesses, and derive an

informed choice. In terms of selecting a suitable AOSE

methodology, the advantages and disadvantages of

each methodology should be measured against the

goals and application.

A. Gaia

The inherent strengths of Gaia include but are not

limited to the following: (1) it does not refer to the

implementation issues, thus is not limited to the

specific language of a platform. (2) It could be mapped

to the life cycle introduced by ESA (European space

agency). (3) Both phases of Gaia (analysis and design)

have deliverables (models). Gaia can be used in

creating new software, re-engineering and designing

systems with reuse components [9].

B. Passi

The inherent strengths of Passi include but are not

limited to the following: (1) it is supported by a CASE

tool, (2) Passi supports all multi-agent concepts except

for the mental notion (i.,e BDI), With respect to

modeling and notation aspect, it uses UML; supports

well accessibility, expressiveness and complexity

management [15].

Volume 2 | Issue 3 | May-June-2017 | www.ijsrcseit.com

 667

C. MAS-CommonKADS

The main strength of this methodology is its simplicity,

which is, extending in a natural way the standard

software engineering methods. It takes into account

reusability at all levels of the models, making it easy to

reuse analyses and design from previous projects.

Disadvantages

D. Gaia

This methodology suffers from a number of limitations

that may undermine the possibility of its effective

adoption for a majority of real-world multi-agent

scenarios.

The Limitations include but not limited to the

following; (1) it covers the design phase but does not

explicitly support an implementation phase. (2) Gaia is

only concerned with the society level; it does not

capture the internal aspects of agent design. (3) Gaia, in

the original proposal, is suitable only for the analysis

and design of closed MAS, in which agents must be

benevolent to each other and willing to cooperate. Four,

the notation used by Gaia to model and represent a

MAS and its component appear unsuitable to tackle

complexities of the real world systems and even worse,

do not follow accepted software engineering methods.

Five, Gaia does not address implementation and there

is no tool support that we are aware of.

E. Passi

The limitations inherent in PASSI include; Multiplicity

problem (from UML): the need to concurrently refer to

different models in order to understand a system and

the way it operates and changes over time is a critical

issue. (From UML) Each model introduces its own set

of symbols and concepts, thus leading to an unnatural

complexity in terms of vocabulary. It does not consider

the environment. It is not suitable in managing

complexity.

F. MAS-CommonKADS

The limitations inherent in MAS-CommonKADS

include; it offers limited support in design, testing, and

coding. CommonKADS was not designed for

developing MAS. The main restrictions for the direct

application of CommonKADS to MAS come from the

CommonKADS CM. The CM deals mostly with

human-computer interaction and is very restrictive for

computer-computer interaction.

VI. CONCLUSION

It is a quite difficult venture to select a specific

methodology in order to employ it or even to evaluate

them. This is because they usually differ in their

premises, covered phases, models, concepts and the

supported multi-agent system properties.

A discussion about their advantages and difficulties

shows a lot of divergences; while some methodologies

allow for the idea of a society of agents or the idea of

an organization that offers a coherent conceptual

infrastructure for analysis and design of multi-agent

systems, others don’t. While some methodologies

explicitly provide the cooperation between agents and

the concepts used to describe the type of control, others

are not clear. While some methodologies are becoming

close to a complete methodology for multi-agent

systems, others are not. Some deal with inter-agent

perspectives, others with intra-agent perspectives, and a

few others deal with both.

Our literature suggests that understanding the approach

a methodology takes is fundamental and especially in

cases where a hybrid may be ideal.

Having considered all surrounding issues, the choice of

a specific methodology by a practitioner, depends on

three issues; which are (1) the approach a methodology

takes e.g. Object oriented, (2) maturity, availability of

documentation and tool support, and (3) possibility of

co-existence of a hybrid.

VII. REFERENCES

[1] P. Bresciani, A. Perini, P.Giorgini, F.Giunchiglia,

J. Mylopoulos, Tropos: An Agent-Oriented

Software Development Methodology

(Autonomous Agents and Multi-Agent Systems),

Volume 8, Number 3, (2004) 203—236.

[2] B. Bauber, J. Odell. UML 2.0 and agents: how to

builds agent based system with new UML

standard, Journal of engineering applications of

AI 18(2) (2005).

[3] M. Luck, P. McBurney, C. Preist, Agent

Technology: Enabling Next Generation

Computing (A Roadmap for Agent Based

Volume 2 | Issue 3 | May-June-2017 | www.ijsrcseit.com

 668

Computing), AgentLink, 2003, ISBN 0854

327886.

[4] B. Henderson-Sellers, P. Giorgini (Eds.), Agent-

Oriented Methodologies, Idea Group Publishing,

Hershey (2005) 107-135.

[5] F. Bergenti, M.-P. Gleizes, F. Zambonelli (Eds.),

Methodologies and Software Engineering for

Agent Systems, Kluwer Academic Publishing

(New York), 2004.

[6] S. A. DeLoach, M. F. Wood, C. H. Sparkman,

Multiagent systems engineering, International

Journal of Software Engineering and Knowledge

Engineering 11 (3) (2001) 231–258.

[7] S. A. DeLoach, J. C. Garcia-Ojeda, O-MaSE: A

customizable approach to developing multiagent

development processes, International Journal of

Agent-Oriented Software Engineering 4 (2010)

244–280. doi:10.1504/IJAOSE.2010.036984.

[8] P. Bresciani, P. Giorgini, F. Giunchiglia, J.

Mylopoulos, A. Perini, Tropos: An agent-

oriented software development methodology,

Journal of Autonomous Agents and Multi-Agent

Systems (JAAMAS) 8 (2004) 203–236.

[9] F. Zambonelli, N. R. Jennings, M. Wooldridge,

Developing multiagent systems: The Gaia

methodology, ACM Transactions on Software

Engineering and Methodology 12 (3) (2003)

317–370. doi:10.1145/958961.958963.

[10] L. Padgham, M.Winikoff, Developing intelligent

agent systems: A practical guide, John Wiley &

Sons, Chichester, 2004, ISBN 0-470-86120-7.

[11] J. Pavon, J. J. Gomez-Sanz, R. Fuentes, The

INGENIAS methodology and tools, in: B.

Henderson-Sellers, P. Giorgini (Eds.), Agent-

Oriented Methodologies, Idea Group Publishing,

(2005) 236–276.

[12] J. Pav´on, J. G´omez-Sanz, Agent oriented

software engineering with INGENIAS, in: V.

Mar´ık, M. Pechoucek, J. M¨uller (Eds.), Multi-

Agent Systems and Applications III, Vol. 2691 of

Lecture Notes in Computer Science, Springer

Berlin / Heidelberg, (2003) 394–403.

[13] R. Cervenka, I. Trencansky, AML The Agent

Modeling Language: A Comprehensive

Approach to Modeling Multi-Agent Systems,

Birkh¨auser, 2007, ISBN 978-3-7643-8395-4.

[14] M. Cossentino, V. Seidita, PASSI2 - going

towards maturity of the PASSI process,

Technical Report RT-ICAR-PA-09-02

(December 2009).

[15] M. Cossentino, From requirements to code with

the PASSI methodology, in: B. Henderson-

Sellers, P. Giorgini (Eds.), Agent-Oriented

Methodologies, Idea Group Inc., (2005) 79–106.

[16] M. Elammari , W. Lalonde, :An agent –Oriented

Methodology: High- Level and Intermediate

Models HLIM. In Proceedings of AOIS,

Heidelberg (1999)

[17] S. Munroe, T. Miller, R. A. Belecheanu, M.

Pˇechouˇcek, P. McBurney, M. Luck, Crossing

the agent technology chasm: Lessons,

experiences and challenges in commercial

applications of agents, Knowledge Engineering

Review 21 (4) (2006) 345–392.

doi:10.1017/S0269888906001020.

[18] L. Padgham, M. Winikoff, Prometheus: A

methodology for developing intelligent agents

Agent-oriented software engineering III,

(2002)174-185.

[19] A.Omicini, Societies and Infrastructures in the

analysis and Design of Agent-Based Systems. P.

Ciancarini, and M. Wooldridge (Eds.) Agent

Oriented Software engineering, Springer-Verlag,

(2001) 185-193.

[20] G.Bush, S.Cranefield, M. Purvis: The Styx agent

methodology (Information Science Discussion

Papers Series No. 2001/02). University of Otago.

Retrieved from http://hdl.handle.net/10523/831,

(2001).

[21] A .Collinot, P .Carle, K .Zengal : A Method for

designing computational organizations, In

Proceedings of the First International Workshop

on Decentralized Intelligent Multi-Agent

Systems, Poland, (1995).

[22] M. Gervais, ODAC: An Agent-Oriented

Methodology based on ODP. Journal of

Autonomous Agents and Multi-Agent Systems,

7(3), (2003) 99-228.

[23] S. DeLoach: The MaSE Methodology. In F.

Bergenti, M.P. Gleizes & F.Zambonelli (Eds.),

Methodologies and Software Engineering for

Agent Systems: The Agent Oriented Software

Engineering Handbook, Kluwer academic

publishing, (2004) 107-125.

[24] J. Lind: Iterative software engineering for

multiagent systems, The MASSIVE Method,

Berlin: Springer-Verlag, (2001).

[25] F. Brazier, B. Dunin-Keplicz, N. Jennings, J.

Treur ,DESIRE: modelling multi-agent systems

Volume 2 | Issue 3 | May-June-2017 | www.ijsrcseit.com

 669

in a compositional formal framework, Int J.

Cooperative Inf. Syst. 6(1), (1997) 67-94.

[26] D. Kinny, M. Georgeff, A. Rao ,A methodology

and modeling technique for systems of BDI

agents, In Proceedings of the Seventh European

Workshop on Modelling Autonomous Agents in

a MultiAgent World (MAAMAW-96),

Netherlands: Springer, (1996) 56- 71.

[27] E. Kendall, M. Malkoun , C. Jiang, A

Methodology for Developing Agent Based

Systems for Enterprize Integration, in P. Bernus

and L. Nemes, editors, Modelling and

Methodologies for Enterprise Integration,

Chapman and Hall, 1996.

[28] B. Burmeister, Models and Methodology for

Agent-Oriented Analysis and Design, in Fischer

K. editor, Working Notes of the KI'96 Workshop

on Agent-Oriented Programming and Distributed

Artificial Intelligence, DFKI document D-96-06,

http://www.dfki.uni-

kl.de/dfkidok/publications/D/96/06/abstract.html,

1996.

[29] B. Moulin and L. Cloutier, Collaborative work

based on multiagent architectures: A

methodological perspective. In Fred Aminzadeh

and Mohammad Jamshidi, editors, Soft

Computing: Fuzzy Logic, Neural Networks and

Distributed Artificial Intelligence, Prentice-Hall,

(1994) 261–296.

[30] C. Iglesias, M. Garijo, J. Gonzalez,J. Velasco.

Analysis and design of multiagent systems using

MAS-CommonKADS. In AAAI’97 Workshop

on Agent Theories, Architectures and Languages,

Providence, RI, July 1997. ATAL. (An extended

version of this paper has been published in

INTELLIGENT AGENTS IV: Agent Theories,

Architectures, and Languages, Springer-Verlag,

(1998).

[31] C. Iglesias, M. Garijo, J. Gonzalez .A Survey of

Agent-Oriented Methodologies, in Intelligent

Agents IV: Agent Theories, Architectures, and

Languages, 1555 of LNAI, Springer-Verlag

(1999) 317-330.

[32] N. Glaser .The CoMoMAS Methodology and

Environment for Multi-Agent System

Development, Proceedings of the Second

Australian Workshop on Distributed Artificial

Intelligence: Multi-Agent Systems:

Methodologies and Applications, Springer-

Verlag (1997) 1-16.

[33] M. Wooldridge and R. Jennings, Pitfalls of

Agent-Oriented Development, in Proceedings of

the Second International Conference on

Autonomous Agents (Agent 98), Minneapolis/St.

Paul: ACM Press, (1998) 385-391.

[34] J. Odell, Objects and Agents Compared, in

Journal of Object Technology, 1 (1) (2002) 41-

53.

