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ABSTRACT 
 

This paper introduces a regularization method to explicitly control the rank of a learned symmetric positive 

semidefinite distance matrix in distance metric learning. To this end, we propose to incorporate in the objective 

function a linear regularization term that minimizes the k smallest eigenvalues of the distance matrix. It is equivalent 

to minimizing the trace of the product of the distance matrix with a matrix in the convex hull of rank-k projection 

matrices, called a Fantope. Based on this new regularization method, we derive an optimization scheme to 

efficiently learn the distance matrix. We demonstrate the effectiveness of the method on synthetic and challenging 

real datasets of face verification and image classification with relative attributes, on which our method outperforms 

state-of-the-art metric learning algorithms. 

Keywords: Distance Metric, Mahalanobis Distance Metric, Metric Learning Fantope Regularization, Ky Fan’s 

Theorem 

 

I. INTRODUCTION 

 
Distance metric learning is useful for many Computer 

Vision tasks, such as image classification, retrieval or 

face verification. It emerges as a promising learning 

paradigm, in particular because of its ability to learn 

with attributes. Metric learning algorithms produce a 

linear transformation of data which is optimized to fit 

semantical relationships between training samples. 

Different aspects of the learning procedure have 

recently been investigated: how the dataset is annotated 

and used in the learning process, e.g. using pairs, 

triplets or quadruplets of samples; design choices for 

the distance parameterization; extensions to large scale 

context, etc. Surprisingly, few attempts have been 

made for deriving a proper regularization scheme, 

especially in the Computer Vision literature. 

Regularization in metric learning is however a critical 

issue, as it often limits model complexity, the number 

of independent parameters to learn, and thus overfitting. 

Models learned with regularization usually better 

exploit correlations between features and often have 

improved predictive accuracy. In this thesis, we 

propose a novel regularization approach for metric 

learning that explicitly controls the rank of the learned 

distance matrix.  

 

Figure 1. The relevance of our approach 

Above figure illustrates the relevance of our approach. 

We present retrieval results after metric learning with 

the proposed method, and provide an illustrative 

comparison with LMNN algorithms.  

 

II. Brief Literature Survey 
 

Image representation for classification has been deeply 

investigated in recent years [3, 7]. The traditional Bag-

of-Words representation [10] has been extended for the 

coding step [14] as well as for the pooling [1], or with 

bioinspired models [9, 11]. Nonetheless, similarity 
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metrics are also crucial to compare, classify and 

retrieve images. We focus in this work on supervised 

distance metric learning methods. Some of them 

consider sets of similar and dissimilar pairs of images 

for training [4, 6, 13]. They learn a distance metric that 

preserves distance relations among the training data. 

Other methods consider triplets [2, 5, 8, 12] of images, 

which are easy to generate in classification. For 

instance, LMNN [12] learns a distance metric for k-

Nearest Neighbors (k-NN) approach using those triplet-

wise training sets. In this thesis, we will consider the 

widely used Mahalanobis distance metricDM that is 

parameterized by the PSD matrix M and investigate a 

new optimization scheme with a regularization term 

that explicitly controls the rank of M. Such a scheme 

allows to avoid overfitting without any trick such as 

early stopping.  

 

The main contributions of this thesis will be: 

 

 We introduce a new regularization strategy based on 

the convex hull of rank-k projection matrices, called 

Fantope, which allows to explicitly control the rank 

of distance matrices.  

 We propose an efficient algorithm to solve the new 

optimization scheme.  

 Our framework outperforms state-of-the-art metric 

learning methods on synthetic and challenging real 

Computer Vision datasets. 

 

III. Problem Formulation 
 

Metric learning Fantope regularization (Objective 

function): a metric learning algorithm aims at 

determining M such that the metric satisfies most of the 

constraints defined by the training information. It is 

generally formulated as an optimization problem of the 

form: 

   
 
  ( )   (   ) 

 

where  (   )  is a loss function that penalizes 

constraints that are not satisfied, R(M) is a 

regularization term on the parameter M of the metric, 

and µ ≥ 0 is the regularization parameter.  (   ) 

measures the ability of the matrix M to satisfy some 

distance constraints given in the training set. The type 

of constraints depends on the way relationships 

between training samples are provided, e.g. relations 

between pairs, triplets, quadruplets [13] etc. In thesis, 

we focus on defining an effective regularization term 

R(M). 

 

IV. METHODOLOGY  

 

We evaluate the proposed metric learning 

regularization method in two different Computer 

Vision applications. The first experiment is a face 

verification task, for which the similarity constraints 

come from relations between pairs of face images that 

are either similar or dissimilar. In the second 

experiment, we evaluate recognition performance on 

image classification with relative attributes. In this 

context, we work with features defined in attribute 

space. Algorithm 1 shows the metric learning with 

Fantope Regularization. 

 
 

V. RESULTS AND DISCUSSION 

 

We now provide a quantitative evaluation of our 

method in the described setup. The target rank e of our 

regularization term is fixed to e = 40, as in [18]. 

Impact of regularization: we compare here the impact 

of Fantope regularization over trace regularization. 

Table 1 shows classification accuracies when solving 

Eq. with both regularization methods. Fantope 

regularization outperforms trace regularization by a 

large margin (82.3% vs. 77.6%). This illustrates the 

importance of having an explicit control on the rank of 

the distance matrix. 

 

TABLE 2 :  ACCURACIES OBTAINED ON LFW IN 

THE “RESTRICTED” SETUP WITH OUR 

LEARNING FRAMEWORK IN DIFFERENT 

REGULARIZATION SETTINGS. 
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State-of-the-art results: we now compare Fantope 

Regularization to other popular metric learning 

algorithms. Table 3 shows performances of ITML [6], 

LDML [10] and PCCA [18] reported in [10] and [18] 

in the linear metric learning setup. These methods are 

the most popular metric learning methods when the 

task is to decide whether a pair is similar or dissimilar. 

Fantope regularization, which reaches 82.3 ± 0.5% 

accuracy, outperforms ITML and LDML and is 

comparable to PCCA on LFW in this setup. We explain 

in the following how our method can reach 83:5 ± 

0:5 %. 

 

TABLE 3 : RESULTS (MEAN AND STANDARD 

ERROR) ON LFW IN THE “RESTRICTED” SETUP 

OF STATE-OF-THE-ART LINEAR METRIC 

LEARNING ALGORITHMS AND OF OUR 

METHOD WITH EARLY STOPPING. 

  

 
TABLE 4 : ACCURACY OF MIGNON’S CODE [18] 

ON LFW AS A FUNCTION OF THE NUMBER OF 

ITERATIONS OF GRADIENT DESCENT. THE 

PERFORMANCE OF PCCA [18] GREATLY 

DEPENDS UPON THE EARLY STOPPING 

CRITERION 

 

 
 

Impact of the hyper-parameter: Fig. 2 illustrates the 

impact of the Fantope regularization: 

 

 

 

 
Figure 2. (left) rank and (right) accuracy of the learned 

metric on LFW in the “restricted” setup as a function of 

the hyper-parameter with early stopping. 

 
Figure 3. Some results of similarity search on the 

PubFig and OSR datasets. We show for each query the 

5 nearest neighbors returned by our method (first row) 

and by LMNN (second row). 

 

Results in green correspond to images in the same class 

as the query whereas results in red are images from 

different classes. 

 

VI.CONCLUSION 

 
We proposed a new regularization scheme for metric 

learning that explicitly controls the rank of the learned 

distance matrix. Our method generalizes the trace 

regularization, and can be applied to various 

optimization frameworks to impose a meaningful 

structure on the learned PSD matrix. We also derived 

an efficient metric learning algorithm that combines the 
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regularization term with a loss function that can 

incorporate constraints between pairs or triplets of 

images. We also demonstrate that regularization greatly 

improves recognition on both controlled and real 

datasets, showing the relevance of this new 

regularization to limit overfitting. Future work includes 

the learning of a better designed ADMM formulation 

scheme that takes into account the fact that the 

objective function is not convex. 
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