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ABSTRACT 
 

Let G(V, E) be a graph and λ be a bisection from the set V ∪  E to the set of the first |V | + |E| natural numbers. The 

weight of a vertex is the sum of its label and the labels of all adjacent edges. We say λ is a vertex magic total (VMT) 

labeling of G if the weight of each vertex is constant. We say λ is an (s, d) -vertex anti-magic total (VAT) labeling if 

the vertex weights form an arithmetic progression starting at s with difference d . J. MacDougall conjectured that 

any regular graph with the exception of K2 and 2K3 has a VMT labeling. We give constructions of VAT labelings 

of any even-regular graphs and VMT labelings of certain regular graphs. 

Keywords: Graph Labeling, Vertex Magic Total Labeling, Vertex Antimagic Total Labeling. 

 

I. INTRODUCTION 

 
A labeling of a graph G (V, E) is a mapping from the 

set of vertices, edges, or both vertices and edges to the 

set of labels. Based on the domain we distinguish 

vertex labelings, edge labelings and total labelings. In 

most applications the labels are positive (or 

nonnegative) integers, though in general real numbers 

could be used. Various labelings are obtained based on 

the requirements put on the mapping. Magic labelings 

were introduced by Sedlacek in 1963. In general for a 

magic-type labeling we require the sum of labels 

related to a vertex (a vertex magic labeling) or to an 

edge (an edge magic labeling) to be constant all over 

the graph. In an anti-magic labeling we require that all 

the sums (weights) are different. For many graphs this 

is not difficult to achieve, but not in general. The 

conjecture by Hartsfield and Ringel “All graphs except 

K2 are anti-magic” is still open.The concept of graph 

labeling was introduced by Rosa in 1967. A graph 

labeling is an assignment of integers to the vertices or 

edges or both subject to certain conditions. Labelled 

graphs serve as useful models for broad range of 

applications such as coding theory, X-ray, 

crystallography, radar, astronomy, circuit design, 

communication networks and database management. 

Hence in the intervening years various labeling of 

graphs such as graceful labeling, harmonious labeling, 

magic labeling, anti-magic labeling, bi-magic labeling, 

prime labeling, cordial labeling etc. have been 

considered in the literature. A graph G = G (V, E) with 

V vertices is said to admit prime labeling, if its vertices 

can be labeled with distinct positive integers, not 

exceeding V such that the labels of each pair of 

adjacent vertices are relatively prime. 

 

II.  METHODS AND MATERIAL 

 

Basic Definition of Magic Labelling of Regular 

Graph 

 

2.1. Definition: Let G be a graph with vertex set V and 

edge set E. We denote v = |V | and e = |E|. Let λ be a 

one-to-one mapping λ: V ∪ E → {1, 2, . . . , v + e} . 

The labeling λ is called a vertex magic total (VMT) 

labeling of G if there exists a constant h such that for 

every vertex x ∈ V is wλ(x) = h. The constant h is the 

magic constant for λ. The labeling λ is called a vertex 

anti-magic total labeling of G if the vertex weights (1) 

are pairwise different for all vertices of G. If the 

weights form an arithmetic progression s, s + d . . . s + 

(v − 1)d, then λ is called an (s, d) -vertex anti-magic 

total (VAT) labeling of G . 

 

A graph is a VMT graph if it admits a VMT labeling 

and similarly a VAT graph allows a VAT labeling. 

Examples of VMT and VAT labelings are given in 

Sections 3 and 4. We use the notation v = |V | and e = 

|E| through the rest of this section. 



Volume 2 | Issue 4 | July-August -2017  | www.ijsrcseit.com | UGC Approved Journal [ Journal No : 64718 ] 

 
 616 

2.2. Definition:A graph with p vertices and edges is 

called total edge-magic if there is a bisection f: V∪E → 

{1, 2, …….., p+q} such that there exists a constant „s‟ 

for any (u, v) in E satisfying f(u) + f(u.v) + f(v)= s. The 

original concept of total edge-magic graph is due to 

Kotzig and Rosa. 

 

2.3. Definition:A total edge magic graph is called a 

super edge magic graph if f : (V(G)) → { 1, 2, …… p}. 

The concept was introduced by Hikoe Enomoto et al., 

in 1998. A merge graph G1*G2 can be formed from two 

graphs G1 and G2 by merging a node of G1 with a node 

of G2. As an example let us consider T3, a tree with 

three vertices and S2 a star on three vertices then T3 * 

S2 is formed as follows. Consider a vertex b of T3. 

Consider a vertex v1 of S2. 

 

2.4. Definition:Let G = (V, E) be a graph with a finite 

set of vertices V (G) together with a set E(G) of edges. 

Each edge e connects two vertices x, y ∈ V , e = (x, y). 

The cardinality of G is defined by n = |V (G)|, while m 

= |E(G)| defines the size of G. The edges and vertices 

of a graph are also said to be the graph elements. 

The ncm graph is edge-magic for m=3 and n = 2, 3 

 

Example:The ncm graphs have edge-magic labeling 

for m=3 and n= 2, 3 as shown below. 

 

 
 

2.5. Definition: Graph theory is the study of 

mathematical structures called graphs. We define a 

graph as a pair (V, E), where V is a nonempty set, and 

E is a set of unordered pairs of elements of V. V is 

called the set of vertices of G, and E is the set of edges. 

Two vertices a and b are adjacent provided (a, b) ∈ E. 

If a pair of vertices is adjacent, the vertices are referred 

to as neighbors. We can represent a graph by 

representing the vertices as points and the edges as line 

segments connecting two vertices, where vertices a, b ∈ 

V are connected by a line segment if and only if (a, b) 

∈ E. Figure 1 is an example of a graph with vertices V 

= {x, y, z, w} and edges E = {(x, w),(z, w),(y, z)}. 

 
2.6. Definition:A walk of length k is a sequence of 

vertices v0, v1, . . . , vk, such that for all i > 0, vi is 

adjacent to vi−1. A connected graph is a graph such that 

for each pair of vertices v1 and v2 there exists a walk 

beginning at v1 and ending at v2. The graph in Figure 2 

is not connected because there is no walk beginning at 

z and ending at w. 

http://www.ijsrcseit.com/
http://www.ugc.ac.in/journallist/ugc_admin_journal_report.aspx?eid=NjQ3MTg=
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2.7.Definition:A cycle of length k > 2 is a walk such 

that each vertex is unique except that v0 = vk. From this 

point on, we will also assume that every graph 

discussed has at most one edge connecting each pair of 

vertices. That is, we assume that there are no 2-cycles. 

A tree is a graph with no cycles. The girth of a graph is 

the length of its shortest cycle. Since a tree has no 

cycles, we define its girth as inf ∅ = ∞. 

 
 

2.1.Theorem:Let G: (σ, μ) be a k – regular graph. Then 

dG (u) = k, for all u ∈ V. Assume that μ is a constant 

function. Then to prove that G is edge regular.  

 

Proof :Let μ = c. By the definition of edge degree,  

dG (uv) = dG (u) + dG (v) – 2μ(uv), for all uv ∈ E. = k + 

k – 2c  

⇒ dG (uv) = k1, for all uv ∈ E, where k1 = k + k – 2c.  

Hence G is edge regular. Conversely, assume that G is 

edge regular. Then to prove that μ is a constant 

function. Let dG (uv) = k1, for all uv ∈ E. 

By the definition of edge degree,  

dG (uv) = dG (u) + dG (v) – 2μ (uv), for all uv ∈ E. k1 = 

k + k – 2μ(uv)  

⇒ μ(uv) = (2k – k1)/2 = c, for all uv ∈ E, where c = (2k 

– k1)/2.  

Hence μ is a constant function. 

 

2.2.Theorem:For every n ≥ 5, there exists a 4-regular 

(n, 2n)-Bimagic graph of girth 3 with constants 4n-1 

and 5n-1. 

Proof: From the structure of 4-regular graph of girth j 

where j = 3, we have n vertices and 2n edges. To prove 

that for every n ≥ 5, there exists a 4-regular graph of 

girth 3 which admits bi-magic labeling with magic 

constants 4n-1 and 5n-1. i.e., we have to show that the 

induced function f*:V →N is defined as f* (vi) ={Σf(vi 

vj)=either k1or k2, where k1 & k2 are constants and vivj 

∈ E}. 

Define the map f on E as follows: 

Let f: E → {1, 2, 3……..2n} such that 

 (i) f (vi , vi+1) = i, 1 ≤ i ≤ n-1; 

(ii) f (vn, v1) = n; 

(iii) f (vi+2 , vi) = 2n – i -1 , 1 ≤ i ≤ n-2; 

(iv) f (v1 , vn-1) = 2n 

(v) f (v2 , vn) = 2n-1. 

(n-2) +1 + 1 = 2n. In order to get the labels on vertices 

define the induced map f* on V as f*: V →N is defined 

such that f* (vi) = {Σ f (vi vj)/ vi vj ∈ E}. Now for every 

vi ∈ V, f*(v2) = 1 + 2 + (2n-3) + (2n-1) 

[By (iii), (iv) ]  

F *(vi) = [2n – (i-2) – 1] + (i-1) + i + (2n-i-1) where i = 

3 to n-2. [By (iii), (i), (iii)] 

f *(v1) = 1 + (2n-2) + 2n + n [By (iii), (iv), (ii) ] 

f*(vn-1) = 2n + (n-2) + (n + 2) + (n-1) [ By (iv), (i), (iii] 

f* (vn) = n + (2n-1) + (n-1) + (n +1) [ By (ii), (v), (i), 

(iii) ] 

Thus f*(v2) = f*(v3) = …..=f*(vn-2) = 4n-1 and f*( v1)= 

f*(vn-1) = f*(vn) = 5n-1. 

Example: 

4- Regular (8, 16) graph of girth 3 admits Bimagic 

labeling. 

 
Hence the 4- Regular (8, 16) graph of girth 3 admits 

bi-magic labeling with magic constants 31 and 39. 

 

http://www.ijsrcseit.com/
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2.3.Theorem : For every n ≥ 7, there exists a 4–regular 

(n, 2n) Bi-magic graph of girth 4 with magic constants 

4n-2 and 5n-2. 

 

Proof:From the structure of 4-regular graph of girth j 

where j = 4, we have n vertices and 2n edges. To prove 

that, for n ≥ 7 with girth j where j = 4 there exists a 4-

regular graph which admits bi-magic labeling with 

magic constants 4n-2 and 5n-2. i.e., we have to show 

that the induced function. 

f* : V →N is defined as f* (vi) = { Σ f ( vi vj) = either k1 

or k2 where k1 & k2 are two constants and vi vj ∈ E}. 

Define the map f on E as follows: 

Let f: E → {1, 2, 3……..2n} such that 

(i) f (vi , vi+1) = i, 1 ≤ i ≤ n-1; 

(ii) f (vn, v1) = n; 

(iii) f (vi+3 , vi) = 2n – i -2 , 1 ≤ i ≤ n-3; 

(iv) f (v1 , vn-2) = 2n 

(v) f (v2 , vn-1) = 2n-1. 

(vi) f (v3 , vn) = 2n-2. 

Thus, Number of labels assigned to edges = (n-1) + 1+ 

(n-3) +1+1+1= 2n. In order to get the labels on vertices 

define the induced map f* on V as f*: V N is defined 

such that f* (vi) = {Σ f ( vi vj)/ vi vj ∈ E}.  

Now for every vi ∈V, f*(vi) = (i-1) + i + (2n –(i-2)–

1)+(2n–i-2) where i=2 to n – 3 

[By (i), (iii)] 

F * (v1) = 1 + n + 2n + (2n - 3) [By (ii), (iv), (iii) ] 

f*(vn-2) = n -2 + n -3 + 2n + n+3. [By (i), (i), (iv), (i)] 

f*(vn-1) = (n–1) + (n-2) + (2n-1) + (n+2) [ By (i), (v), 

(iii)] 

f* ( vn) = n + (2n-2) + (n-1) + (n+1) [ By (ii), (vi), (i), 

(iii)] 

Thus f*(v2) = f*(v3) =………..= f*(vn-3) = 4n - 2 and f* 

(v1) = f*(vn-2) = f*(vn-1) = f*(vn) = 5n-2. 

 

Example: 

4-Regular (8, 16) graph of girth 4 admits Bi-magic 

labelling 

 
 

Hence, the 4-Regular (8, 16) graph of girth 4 admits 

bi-magic labeling with magic constants 30 and 38. 

 

2.4.Theorem: Petersen Theorem: 

 

Let G be a 2r -regular graph. Then there exists a 2 -

factor in G. 

Notice that after removing edges of the 2-factor 

guaranteed by the Petersen Theorem we have again an 

even regular graph. Thus, by induction, an even regular 

graph has a 2-factorization. The following theorem 

allows to find several (s, 1) -VAT labelings of any even 

regular graph. 

Let G be a 2r-regular graph with vertices x1, x2. . . xn . 

Let s be an integer, s ∈ {(rn + 1)(r + 1) + tn : t = 0, 

1, . . . , r} . Then there exists an (s, 1)-VAT labeling λ 

of G such that λ(xi) = s + (i − 1). 

 

Proof : By induction on r. We show a stronger result. 

Not only we give an (s, 1) -VAT labeling of G, but the 

vertex labels will be consecutive integers. Moreover, 

we can specify which weight s + (i − 1) will be 

assigned to which vertex by ordering the vertices xi 

accordingly. For r = 0 the statement is trivial. The set of 

possible values of s is {(0n + 1)(0 + 1) + 0n} = {1} . 

We label the vertices xi by 1 + (i − 1) = i for i = 1, 

2, . . . , n . In the inductive step we suppose the claim is 

true for p -regular graphs, p = 0, 1, . . . , r . We show 

that it is true also for p = r + 1. Let G be a (2r + 2) -

regular graph with vertices x1, x2, . . . , xn. By the 

Petersen Theorem there exists a 2 -regular factor F in G. 

By G′ we denote the the 2r -regular graph obtained 

from G by removing the edges of F. By the assumption 

G′ has an (s, 1) -VAT labeling λ ′ such that s ∈ {(rn + 

1)(r + 1),(rn + 1)(r + 1) + n, . . . ,(rn + 1)(r + 1) + rn} and 

http://www.ijsrcseit.com/
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the vertex labels are consecutive integers λ ′ (xi) = k + 

(i− 1) for some k ( k is the smallest vertex label). The 

factor F is a collection of cycles. We order and orient 

these cycles arbitrarily. By out (xi) we denote the end 

vertex of the outgoing arc from xi and by in (xi) we 

denote the begin vertex of the incoming arc to xi. 

 

We define the labeling λ1 of G by 

 λ1 (xi xj) = λ′ (xi xj) ∀xixj ∈ E(G ′ ) i, j ∈ {1, 2, . . . , n}  

λ1 (xi out (xi)) = λ ′ (xi) ∀xi out (xi) ∈ E(F)  

λ1 (xi) = n(r + 2) + k − λ ′ (in (xi)) ∀xi ∈ V (F). 

Another labeling λ2 of G is given by 

λ2 (xixj ) = λ ′ (xixj ) ∀xixj ∈ E (G ′ ) i, j ∈ {1, 2, . . . , n} 

λ2 (xi out (xi)) = n(r + 1) − (k − 1) + λ ′ (xi) ∀xi out (xi) 

∈ E (F) 

λ2 (xi) = 2k + n − 1 − λ ′ (in (xi)) ∀xi ∈ V (F). 

 

The weight of any vertex in labeling λ1 is wλ1 (xi) = n(r 

+ 2) + k + s + (i − 1). We know that s = (rn + 1)(r + 1) + 

tn for t ∈ {0, 1, . . . , r} . Since k is the smallest vertex 

label and since we assign always an n -tuple of labels to 

either edges or vertices of a 2 -regular factor, we can 

write k = qn + 1 = (q − r + r) n + 1 = (q − r)n + (rn + 1) . 

The value t specifies that the (r + 1 − t)
th
 n -tuple was 

used to label vertices in λ ′ , thus q ≥ r − t. We have  

wλ1 (xi) = n(r + 2) + (q − r)n + (rn + 1) + (rn + 1)(r + 1) 

+ tn + (i − 1)  

 = n(r + 2) + (rn + 1)(r + 2) + (t + q − r)n + (i − 

1)  

 = ((r + 1)n + 1)(r + 2) + (t + q − r)n + (i − 1). 

 

The labeling λ1 is an (s1, 1) -VAT labeling of the 2(r + 

1) -regular graph G where the smallest weight is s1 = 

((r + 1)n + 1)(r + 2) + (t + q − r)n. 

 

Not only both labelings λ1 and λ2 assign consecutive 

integers to the vertices, but also the weight of vertices 

always increases with the vertex subscript i  

wλ1 (xi) = s1 + (i − 1) ∧ wλ2 (xi) = s2 + (i − 1). 

This concludes the inductive step and the proof. 

 

Example: 

 

We construct several (s, 1)-VAT labelings of K5 based 

on the construction given in the proof of Theorem 3.2. 

For r = 0 is G = K5 and the construction is trivial. 

 
Now for r = 1 we take the factor F to be the cycle 

v1v2v3v4v5v1. We can construct a (12, 1) -VAT labeling 

λ1 of C5 or a (17, 1) -VAT labeling λ2 of C5. The 

weights are in bold. 

 

III. CONCLUSION 

 
We proposed magic labeling graph approach is used for 

solving VAT labeling graph. Due to additional 

restriction in TSP it is difficult to solve by using AP, 

even though online Assignment Problem solver fail to 

solve this problem. Based on the experiments, it can be 

concluded that the quality of solutions depends on the 

number of ants. The lower number of ants allows the 

individual to change the path much faster. The higher 

number of ants in population causes the higher 

accumulation of pheromone on edges, and thus an 

individual keeps the path with higher concentration of 

pheromone with a high probability. The final result 

differs from optimal solution by km (deviation is less 

than). The great advantage over the use of exact 

methods is that provides relatively good results by a 

comparatively low number of iterations, and is 

therefore able to find an acceptable solution in a 

comparatively short time, so it is useable for solving 

problems occurring in practical applications.  
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