
CSEIT1725100 | Received : 01 Oct 2017 | Accepted : 08 Oct 2017 | September-October-2017 [(2)5: 614-622]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2017 IJSRCSEIT | Volume 2 | Issue 5 | ISSN : 2456-3307

614

Privacy-Preserving Distributed Mining Technique of Association

Rules on Horizontally Partitioned Data
P. Kavitha, M.C.A., M.Phil

Assistant Professor, Department of Computer Science, Arulmigu Palaniandavar Arts College For Women, Palani,

Tamil Nadu, India

ABSTRACT

Huge volume of detailed personal data is regularly collected and sharing of these data is proved to be beneficial for

data mining application. Such data include shopping habits, criminal records, medical history, credit records etc. On

one hand such data is an important asset to business organization and governments for decision making by analyzing

it. On the other hand privacy regulations and other privacy concerns may prevent data owners from sharing

information for data analysis. In order to share data while preserving privacy data owner must come up with a

solution which achieves the dual goal of privacy preservation as well as accurate clustering result. The sharing of

data is often beneficial in data mining applications. It has been proven useful to support both decision-making

processes and to promote social goals. However, the sharing of data has also raised a number of ethical issues. Some

such issues include those of privacy, data security, and intellectual property rights. In this dissertation, we focus

primarily on privacy issues in data mining, notably when data are shared before mining. Specifically, we consider

some scenarios in which applications of association rule mining and data clustering require privacy safeguards.

Addressing privacy preservation in such scenarios is complex. One must not only meet privacy requirements but

also guarantee valid data mining results. In particular, we address the problem of transforming a database to be

shared into a new one that conceals private information while preserving the general patterns and trends from the

original database. To address this challenging problem, we propose a unified framework for privacy-preserving data

mining that ensures that the mining.

Keywords : Data Mining, Association Rile Mining, Data transformation.

I. INTRODUCTION

The sharing of association rules is often beneficial in

industry, but requires privacy safe-guards. One may

decide to disclose only part of the knowledge mined

from databases, and protect sensitive knowledge

represented by sensitive rules. These sensitive rules

must re-main private since they are essential for

strategic decisions. Some companies prefer to share

their data for collaboration, while others prefer to share

only the patterns discovered from their data. Our

algorithms presented in this chapter take into account

these two important aspects, i.e., the sharing of data

and the sharing of patterns. The process of protecting

sensitive rules in transactional databases is called data

sanitization. We describe some scenarios that

demonstrate the need for techniques to protect

collective privacy (e.g., sensitive knowledge) in

association rule mining. This framework is composed

of a retrieval facility (e.g., inverted index), a set of

algorithms to “sanitize” a database, and a set of metrics

to measure how much private information is disclosed

as well as the impact of the sanitizing algorithms on

valid mining results. We introduce data sharing-based

sanitizing algorithms in which the sanitization process

acts on the data to remove or hide the group of

sensitive association rules. After sanitizing a database,

the released database is shared for association rule

mining. A different approach to hide sensitive

knowledge is introduced called pattern sharing-based.

In this approach, the sanitizing algorithm acts on the

rules mined from a database instead of the data itself.

Rather than sharing the data, data owners may prefer to

mine their own data and share some discovered

patterns. The sanitization removes not only all sensitive

Volume 2 | Issue 5 | September-October-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718] 615

patterns but also blocks other patterns that could be

used to infer the sensitive hidden ones.

II. MOTIVATION FOR PRIVACY-PRESERVING

ASSOCIATION RULE MINING

Today, collaboration has become prevalent in the

competitive commercial world since it brings mutual

benefits. Such collaboration may occur between

competitors or companies that have conflicts of

interest. However, collaborators are aware that they are

provided with an advantage over other competitors.

Association rule mining creates assets that

collaborating companies can leverage to expand their

businesses, improve profitability, reduce costs, and

support marketing more effectively. In tandem with

these benefits, association rule mining can also, in the

absence of adequate safeguards, open new threats to

both individual and collective privacy. Let us consider

some examples in which privacy-preserving association

rule mining really matters. Suppose we have a server

and many clients, with each client having a set of sold

items (e.g., books, movies, etc). The clients want the

server to gather statistical information about

associations among items in order to provide

recommendations to the clients. However, the clients

do not want the server to be able to derive some

sensitive association rules. In this context, the clients

represent companies and the server hosts a

recommendation system for an e-commerce

application. In the absence of ratings, which are used in

collaborative filtering for automatic recommendation

building, association rules can be effectively used to

build models for on-line recommendations. When a

client sends its frequent itemsets to the server, this

client sanitizes some sensitive itemsets according to

some specific policies. The sensitive itemsets contain

sensitive knowledge that can provide a competitive

advantage. The server then gathers statistical

information from the sanitized itemsets and recovers

from them the actual associations. Two companies

have a very large dataset of records of their customer’s

buying activities. These companies decide to

cooperatively conduct association rule mining on their

datasets for their mutual benefit since this collaboration

brings them an advantage over other competitors.

However, these companies may not want to share some

strategic patterns hidden within their own data with the

other party. They would like to transform their data in

such a way that these sensitive association’s rules

cannot be discovered. Is it possible for these companies

to benefit from such collaboration by sharing their data

while preserving some sensitive association rules.

Let us consider the case in which one supplier offers

products in reduced prices to some consumers and, in

turn, this supplier receives permission to access the

database of the consumers' customer purchases. The

threat becomes real whenever the supplier is allowed to

derive sensitive association rules that are not even

known to the database owners (consumers). In this

case, the consumers benefit from reduced prices,

whereas the supplier is provided with enough

information to predict inventory needs and negotiate

other products to obtain a better deal for his consumers.

This implies that the competitors of this supplier start

losing business. How can the consumers protect some

sensitive association rules of customer purchases, while

allowing the supplier to mine other useful association

rules.

III. THE FRAMEWORK FOR PRIVACY-

PRESERVING ASSOCIATION RULE MINING

In this section, we introduce the framework to address

privacy preservation in association rule mining. As

depicted in Figure-1, the framework encompasses an

inverted le to speed up the sanitization process, a

library of sanitizing algorithms used for hiding

sensitive association rules from the database, and a set

of metrics to quantify not only how much private

information is disclosed, but also the impact of the

sanitizing algorithms on the transformed database and

on valid mining results.

Figure-1: The sketch of the framework for privacy-

preserving association rule mining.

Volume 2 | Issue 5 | September-October-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718] 616

3.3.1 The Inverted File

Sanitizing a transactional database consists of

identifying the sensitive transactions and adjusting

them. To speed up this process, we scan a transactional

database only once and, at the same time, we build our

retrieval facility (inverted file). The inverted file’s

vocabulary is composed of all the sensitive rules to be

hidden, and for each sensitive rule there is a

corresponding list of transaction IDs in which the rule

is present. Figure -2(b) shows an example of an

inverted le corresponding to the sample transactional

database shown in Figure-2(a). For this example, we

assume that the sensitive rules are A,B → D and A,C

→D.

TID Items

T1 A B C D

T2 A B C

T3 A B D

T4 A C D

T5 A B C

T6 B D

Figure-2(a): A sample transactional database

Inverted file

A,B → D → T1, T2

A,C → D → T1, T4

 Sensitive Rules Transaction IDs

Figure-2(b): The corresponding inverted file

Note that once the inverted file is built, a data owner

will sanitize only the sensitive transactions who’s IDs

are stored in the inverted file. Knowing the sensitive

transactions prevents a data owner from performing

multiple scans in the transactional database.

Consequently, the CPU time for the sanitization

process is optimized. Apart from optimizing the CPU

time, the inverted file provides other advantages, as

follows:

 The information kept in main memory is greatly

reduced since only the sensitive rules are stored in

memory. The occurrences (transaction IDs) can be

stored on disk when not fitted in main memory.

 Our algorithms require at most two scans

regardless of the number of sensitive rules to be

hidden: one scan to build the inverted file, and the

other to sanitize the sensitive transactions. The

previous methods require as many scans as there

are rules to hide.

3.3.2 Sanitizing Algorithms

In our framework, the sanitizing algorithms modify

some transactions to hide sensitive rules based on a

disclosure threshold controlled by the database owner.

This threshold indirectly controls the balance between

knowledge disclosure and knowledge protection by

controlling the proportion of transactions to be

sanitized. For instance, if ψ = 50% then half of the

sensitive transactions will be sanitized, when ψ = 0%

all the sensitive transaction will be sanitized, and when

ψ = 100% no sensitive transaction will be sanitized. In

other words, represents the ratio of sensitive

transactions that should be left untouched. The

advantage of this threshold is that it enables a

compromise between hiding association rules while

missing non-sensitive ones, and finding all non-

sensitive association rules but uncovering sensitive

ones. We classify our algorithms into two major

groups: data sharing-based algorithms and pattern

sharing-based algorithms.

 Data Sharing−Based Algorithms

(a) Round Robin Algorithm (RRA)

(b) Random Algorithm (RA)

(c) Item Grouping Algorithm (IGA)

(d) Sliding Window Algorithm (SWA)

 Pattern Sharing−Based Algorithms

(a) Downright Sanitizing Algorithm (DSA)

In the former, the sanitization process acts on the data

to remove or hide the group of sensitive association

rules representing the sensitive knowledge. To

accomplish this, a small number of transactions that

participate in the generation of the sensitive rules have

to be modified by deleting one or more items from

them.

3.3.3 The Set of Metrics

In this section, we introduce the set of metrics to

quantify not only how much sensitive knowledge has

been disclosed, but also to measure the effectiveness of

the proposed algorithms in terms of information loss

and in terms of non-sensitive rules removed as a side

effect of the transformation process. We classify these

metrics into two major groups: (a) Data sharing-based

Volume 2 | Issue 5 | September-October-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718] 617

metrics and (b) Pattern sharing-based metrics.

a) Data sharing-based metrics are related to the

problems illustrated in Figure 4.3. This Figure shows

the relationship between the set R of all association

rules in the database D, the sensitive rules SR, the non-

sensitive association rules SR, as well as the set
'R

of rules discovered from the sanitized database
'D . The

circles with the numbers 1, 2, and 3 are potential

problems that respectively represent the sensitive

association rules that were failed to be hidden, the

legitimate rules accidentally missed, and the artificial

association rules created by the sanitization process.

Figure-3: Data sharing-based sanitization problems.

Problem 1 occurs when some sensitive association

rules are discovered in the sanitized database. We call

this problem Hiding Failure (HF), and it is measured in

terms of the percentage of sensitive association rules

that are discovered from
'D . Ideally, the hiding failure

should be 0%. The hiding failure is measured as

follows:

'

R

R

#S (D)
HF = (4.1)

#S (D)

where #SR(X) denotes the number of non-sensitive

association rules discovered from the database X.

Problem 2 occurs when some legitimate association

rules are hidden as a side effect of the sanitization

process. This happens when some non-sensitive

association rules lose support in the database due to the

sanitization process. We call this problem Misses Cost

(MC), and it is measured in terms of the percentage of

legitimate association rules that are not discovered

from
'D . In the best case, this should also be 0%. The

misses cost is calculated as follows:

'

R R

R

S (D) # S (D)
MC = (4.2)

S (D)

Notice that there is a compromise between the misses

cost and the hiding failure. The more sensitive rules we

hide, the more non-sensitive rules we miss. This is

basically the justification for our disclosure threshold

ψ, which with tuning, allows us to find the balance

between privacy and disclosure of information

whenever the application permits it.

Problem 3 occurs when some artificial association rules

are generated from
'D as a product of the sanitization

process. We call this problem Artifactual Patterns (AP),

and it is measured in terms of the percentage of the

discovered association rules that are artifacts, i.e., rules

that are not present in the original database. Artifacts

are generated when new items are added to some

transactions to alter (decrease) the confidence of

sensitive rules. For instance, in a rule X→Y, if the

items are added to the antecedent part X of this rule in

transactions that support X and not Y , then the

confidence of such a rule is decreased. Artifactual

patterns are measured as follows:

' '

'

| R | - | R R |
AP = (4.3)

| R |

where | X| denotes the cardinality of X.

We could measure the dissimilarity between the

original and sanitized databases by computing the

difference between their sizes in bytes. However, we

believe that this dissimilarity should be measured by

comparing their contents instead of their sizes.

Comparing their contents is more intuitive and gauges

more accurately the modifications made to the

transactions in the database. To measure the

dissimilarity between the original and the sanitized

datasets, we could simply compare the difference in

their histograms. In this case, the horizontal axis of a

histogram contains all items in the dataset, while the

vertical axis corresponds to their frequencies. The sum

of the frequencies of all items gives the total of the

histogram. So the dissimilarity between D and
'D is

Volume 2 | Issue 5 | September-October-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718] 618

given by:

'

n
'

Dn D
i 1

D

i 1

1
Dif (D,D) = x [f (i) - f (i)] (4.4)

f (i)

where fX(i) represents the frequency of the i
th
 item in

the dataset X, and n is the number of distinct items in

the original dataset.

b) Pattern sharing-based metrics: are related to the

problems illustrated in Figure-4 Problem 1 conveys the

non-sensitive rules (RS) that are removed as a side

effect of the sanitization process (RSE). We refer to this

problem as side effect. It is related to the misses cost

problem in data sanitization (Data sharing-based

metrics). Problem 2 occurs when using some non-

sensitive rules; an adversary may recover some

sensitive ones by inference channels. We refer to such a

problem as recovery factor.

Figure-4: Pattern sharing-based sanitization problems.

Side Effect Factor (SEF) measures the number of non-

sensitive association rules that are removed as a side

effect of the sanitization process. The measure is

calculated as follows:
'

R

R

(| R | - (| R | | S |))
SEF = (4.5)

(| R | | S |)

where R,
'R , and SR represent the set of rules mined

from a database, the set of sanitized rules, and the set of

sensitive rules, respectively, and |S| is the size of the

set S.

Recovery Factor (RF) expresses the possibility of an

adversary recovering a sensitive rule based on non-

sensitive ones. The recovery factor of one pattern takes

into account the existence of its subsets. The rationale

behind the idea is that all nonempty subsets of a

frequent itemset must be frequent. Thus, if we recover

all subsets of a sensitive itemset (rule), we say that the

recovery factor for such an itemset is possible, and thus

we assign it the value 1. However, the recovery factor

is never certain, i.e., an adversary may not learn an

itemset even with its subsets. On the other hand, when

not all subsets of an itemset are present, the recovery of

the itemset is improbable, thus we assign value 0 to the

recovery factor. In the pattern sharing-based approach,

the set of sanitized rules to be shared
'(R) is defined as

'

R SER = R - (S + R) , where R is the set of all rules

mined from a database, SR is the set of sensitive rules,

and RSE is the set of rules removed as a side effect of

the sanitization process.

IV. DATA SHARING-BASED SANITIZING

ALGORITHMS

We describe two heuristics to hide sensitive rules in

transactional databases. We then introduce our data

sharing-based algorithms that rely on these heuristics.

4.4.1 Heuristic 1: Sanitization Based on the Degree

of Sensitive Transactions

The optimal sanitization is an NP-hard problem. To

alleviate the complexity of the optimal sanitization, we

could use some heuristics. A heuristic does not

guarantee the optimal solution, but usually finds a

solution close to the best one in a faster response time.

Our first heuristic for data sanitization is based on the

fact that, in many cases, a sensitive transaction

participates in the generation of one or more sensitive

association rule to be hidden. We refer to the number of

sensitive rules supported by a sensitive transaction as

the degree of a sensitive transaction, defined as:

Degree of a Sensitive Transaction: Let D be a

transactional database and ST a set of all sensitive

transactions in D. The degree of a sensitive transaction

t, denoted by degree(t), such that t ε ST , is defined as

the number of sensitive association rules that can be

found in t.

Round Robin, Random, and Item Grouping sanitizing

algorithms is presented which act on the original

database taking into account the degree of sensitive

transactions. For instance, given the number of

sensitive transactions to alter, based on ψ, our

Volume 2 | Issue 5 | September-October-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718] 619

algorithms select for each sensitive rule the sensitive

transactions whose degree is sorted in descending

order. The rationale is that by sanitizing the sensitive

transactions that share a common item with more than

one sensitive rule, the hiding strategy of such rules is

optimized and, consequently, the impact of the

sanitization on the discovery of the legitimate

association rules is minimized. All our data sharing-

based algorithms, which rely on Heuristic 1, have

essentially four major steps:

Step 1: Scan a database and identify the sensitive

transactions for each sensitive association rule. This

step is accomplished when the inverted file is built;

Step 2: Based on the disclosure threshold ψ, calculate

for each sensitive association rule the number of

sensitive transactions that should be sanitized and mark

them. Most importantly, the sensitive transactions are

selected based on their degree (descending order);

Step 3: For each sensitive association rule, identify a

candidate item that should be eliminated from the

sensitive transactions. This candidate item is called the

victim item;

Step 4: Scan the database again, identify the sensitive

transactions marked to be sanitized and remove the

victim items from them.

Most of our sanitizing algorithms mainly differ in step

2 where the sensitive transactions to be sanitized are

selected, and in step 3 in the way they identify a victim

item to be removed from the sensitive transactions for

each sensitive rule. Steps 1 and 4 remain essentially the

same for all approaches. In general, the inputs for these

algorithms are a transactional database D, a set of

sensitive association rules SR, and a disclosure

threshold controlled by the database owner, while the

output is the sanitized database
'D .

4.4.2 The Item Grouping Algorithm

The main idea behind the Item Grouping Algorithm,

denoted by IGA, is to group sensitive rules in groups of

rules sharing the same itemsets. If two sensitive rules

intersect, by sanitizing the sensitive transactions

containing both sensitive rules, one would take care of

hiding these two sensitive rules at once and

consequently reduce the impact on the released

database. However, clustering the sensitive rules based

on the intersections between items in rules leads to

groups that overlap since the intersection of itemsets is

not transitive. By computing the overlap between

clusters and thus isolating the groups, we can use a

representative of the itemset linking the sensitive rules

in the same group as a victim item for all rules in the

group. By removing the victim item from the sensitive

transactions related to the rules in the group, all

sensitive rules in the group will be hidden in one step.

This again would minimize the impact on the database

and reduce the potential accidental hiding of legitimate

rules. Like Round Robin and Random algorithms, the

Item Grouping algorithm builds an inverted index,

based on the transactions in D, in one scan. The

vocabulary of the inverted index contains all the

sensitive rules, and for each sensitive rule there is a

corresponding list of transaction IDs, the IGA builds

the inverted index, and the IGA computes the

frequencies of all items in the database D.

The goal of step 4 is to identify a victim item per

sensitive rule. The victim item in one rule sri is fixed

and must be removed from all the sensitive transactions

associated with this rule sri. The selection of the victim

item is done by first clustering sensitive rules in a set of

overlapping groups GP, such that all sensitive rules in

the same group G share the same items. Then the

groups of sensitive rules are sorted in descending order

of shared items. The shared items are the class label of

the groups. For example, the patterns “ABC” and

“ABD” would be in the same group labeled either A or

B depending on support of A and B. However, “ABC”

could also be in another group if there was one where

sensitive rules shared “C”, the IGA identifies such

overlap between groups and eliminates it by favoring

larger groups or groups with a class label with lower

support in the database. Again, the rationale behind the

victim selection in IGA is that since the victim item

now represents a set of sensitive rules (from the same

group), sanitizing a sensitive transaction will allow

many sensitive rules to be taken care of at once per

sanitized transaction. This strategy greatly reduces the

side effect on the non-sensitive rules mined from the

sanitized database. The sketch of the Item Grouping

algorithm is given as follows:

Item Grouping Algorithm

Input D, SR, ψ

Output:
'D .

Step-1: begin

Step-2: Identifying sensitive transactions and building

Volume 2 | Issue 5 | September-October-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718] 620

index T

Step-3: foreach transaction t ε D do

 For k = 1 to size(t) do

 Sup(itemk, D) ← Sup(itemk, D) + 1;

 Sort the items in t is alphabetic order;

Step-4: for each sensitive association rule sri ε SR do

 if items(sri) t then

T[sri].tid_list ← T[sri].tid_list TID_of(t);

end

end

end

Step-5: Selecting the number of sensitive transactions

For each sensitive association rule sri ε SR do

Sort the vector T [sri].tid_list in descending order of

degree;

NumbTranssri ← [T[sri]] x (1 – ψ);

|T[sri]| is the number of sensitive transactions for sri

end

Step-6: Identifying victim items for each sensitive

transaction

Group sensitive rules in a set of groups GP such that

G ε GP,

 sri,srj ε G, sri and srj share the same itemset I. Give

the class label

 α to G such that α ε I and βεI, sup(α, D) ≤ sup(β,

D);

Step-7: Order the groups in GP by size in terms of

number of sensitive rules in the group;

Step-8: for all srk ε Gi ∩ Gj do

 If size(Gi) ≠ size(Gj) then

 Remove srk from smallest(Gi, Gj);

 else

 remove srk from group with class label α such

that sup(α, D) ≥ sup(β, D)

 and α, β are class labels of either Gi, Gj;

end

 end

Step-9: for each sensitive association rule sri ε SR do

 for j = 1 to NumbTranssri do

ChosenItem← α such that α is the class label of G and

sri ε G;

Victims[T[sri,j]].item_list←Victims[T[sri,j]].item_list

ChosenItem;

 end

 end

Step-10:
'D ← D

 Sort the vector Victims in ascending order of

tID;

 j ← 1

 foreach transaction t ε D do

 if tID = = Victims[j].tID then

 t ← (t - Victims[j].item_list);

 j ← j + 1;

 end

 end

 end

Let us consider the sample transactional database.

Suppose that we have a set of sensitive association

rules SR = {A, B→D; A, C→D}. This example yields

the following results:

Step 1: The algorithms scan the database to identify the

sensitive transactions. For this example, the sensitive

transactions ST containing the sensitive association

rules are {T1, T3, T4}. The degrees of the transactions

T1, T3 and T4 are 2, 1 and 1 respectively. In particular,

the rule A,B!D can be mined from the transactions T1

and T3 and the rule A,C→D can be mined from T1 and

T4.

Step 2: Suppose that we set the disclosure threshold to

50%. Then the algorithms sort the sensitive

transactions in descending order of degree. The

algorithms sanitize half of the sensitive transactions for

each sensitive rule. In this case, only the transaction T1

will be sanitized.

Step 3: In this step, the victim items are selected. Note

that the three algorithms employ different strategies for

this selection. The Round Robin algorithm selects the

victim items for each rule taking turns. The item A is

selected for both rules minimizing the impact on the

database. The Random algorithm selects one item for

each rule randomly. Let us assume that the item A was

selected for the first rule and the item C was selected

for the second rule. The Item Grouping Algorithm

clusters sensitive rules that share a common item. Both

rules share the items A and D. In this case, only one

item is selected, say the item D. By removing the item

D from T1 the sensitive rules will be hidden from T1 in

one step and the disclosure threshold will be satisfied.

Step 4: The algorithms perform the sanitization taking

into account the victim items selected in the previous

step. The sanitized databases using the algorithms

Round Robin, Random, and Item Grouping,

respectively.

TID Items

T1 B C D

T2 A B C

Volume 2 | Issue 5 | September-October-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718] 621

T3 A B D

T4 A C D

T5 A B C

T6 B D

Figure-5(a): The sanitized databases using the Round

Robin algorithm

TID Items

T1 B D

T2 A B C

T3 A B D

T4 A C D

T5 A B C

T6 B D

Figure-5(b): The sanitized databases using the Random

algorithm

TID Items

T1 A B C

T2 A B C

T3 A B D

T4 A C D

T5 A B C

T6 B D

Figure-5(c): The sanitized databases using the Item

Grouping algorithm

An important observation here is that any association

rule that contains a sensitive association rule is also

sensitive. Hence, if A, B→D is a sensitive association

rule, any association rule derived from the itemset

ABCD will also be sensitive since it contains ABD.

This is because if ABCD is discovered to be a frequent

itemset, it is straightforward to conclude that ABD is

also frequent, which should not be disclosed. In other

words, any superset containing ABD should not be

allowed to be frequent.

V. CONCLUSION

We have introduced three heuristics to hide sensitive

association rules by reducing either the support or the

confidence of these rules. The protection of sensitive

rules is achieved by modifying some transactions. In

some cases, a number of items are deleted from a group

of transactions with the purpose of hiding the sensitive

rules mined from those transactions. To accomplish

that, we proposed a unified framework for privacy-

preserving association rule mining, which is the major

contribution of this chapter. This framework

encompasses: a) an inverted index to speed up the

sanitization process; b) a library of sanitizing

algorithms used for hiding sensitive association rules

from the database; and c) a set of metrics to quantify

not only how much private information is disclosed,

but also the impact of the sanitizing algorithms on the

transformed database and on valid mining results.

To speed the process of hiding sensitive rules in

transactional databases, our framework is built on an

index. As a result, the sanitizing algorithms require

only two scans to protect sensitive rules regardless of

the number of association rules to be hidden: one scan

to build an inverted index, and the other scan to hide

the sensitive rules. The sanitizing algorithms are

classified into two major groups: Data-Sharing

approach and Pattern-Sharing approach. In the former,

the sanitization acts on the data to hide the group of

sensitive association rules that contain sensitive

knowledge. In the latter, the sanitizing algorithm acts

on the rules mined from a database, instead of the data

itself. It is important to note that our sanitization

method is robust in the sense that there is no de-

sanitization possible. The alterations to the original

database are not saved anywhere since the owner of the

database still keeps an original copy of the database

intact while distributing the sanitized database for

mining. Moreover, there is no encryption involved.

There is no possible way to reproduce the original

database from the sanitized one.

VI. REFERENCES

[1]. C. Clifton, M. Kantarciofiglu, J. Vaidya, X. Lin,

and M. Y. Zhu. Tools For Privacy Preserving

Distributed Data Mining. SIGKDD Explorations,

4(2):28-34, 2002.

[2]. O. Goldreich, S. Micali, and A. Wigderson. How

to Play Any Mental Game – A Completeness

Theorem for Protocols with Honest Majority. In

Proc. of the 19th Annual ACM Symposium on

Theory of Computing, pages 218-229, New York

City, USA, 1987.

[3]. W. Du and M. J. Atallah. Secure Multi-Party

Computation Problems and their Applications: A

Volume 2 | Issue 5 | September-October-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718] 622

Review and Open Problems. In Proc. of 10th

ACM/SIGSAC 2001 New Security Paradigms

Workshop, pages 13-22, Cloudcroft, New

Mexico, September 2001.

[4]. B. Pinkas. Cryptographic Techniques For

Privacy-Preserving Data Mining. SIGKDD

Explorations, 4(2):12-19, December 2002.

[5]. S. Goldwasser. Multi-party Computations: Past

and Present. In Proc. of the 16th Annual ACM

Symposium on Principles of Distributed

Computing, pages 1-6, SantaBarbara, CA,

August 1997.

[6]. A.C.-C. Yao. How to Generate and Exchange

Secrets. In Proc. of the 27th IEEE Symposium of

Foundations of Computer Science, pages 162-

167, Toronto, Ontario, Canada, October 1986.

[7]. M. Ben-Or, S. Goldwasser, and A. Wigderson.

Completeness Theorems for Non-Cryptographic

Fault-Tolerant Distributed Computation. In Proc.

of the 20th ACM Symposium on Theory of

Computing, pages 1-10, Chicago, Illinois, USA,

1988.

[8]. D. Chaum, C. Crepeau, and I. Damgard.

Multiparty Unconditionally Secure Protocols. In

Proc. of the 20th ACM Symposium on Theory

of Computing, pages 11-19, Chicago, Illinois,

USA, 1988.

[9]. Y. Lindell and B. Pinkas. Privacy Preserving

Data Mining. In Crypto 2000, Springer-Verlag

(LNCS 1880), pages 36-54, Santa Barbara, CA,

August 2000.

[10]. J. R. Quinlan. Learning Efficient Classification

Procedures and Their Application to Chess end

Games. In R.S. Michalski, J.G. Carbonell, and

T.M. Mitchell, eds., Machine Learning - An

Artificial Intelligence Approach, pages 463-482,

Tioga, Palo Alto, CA, 1983.

[11]. M. Kantarcioglu and C. Clifton. Privacy-

Preserving Distributed Mining of Association

Rules on Horizontally Partitioned Data. In Proc.

of The ACM SIGMOD Workshop on Research

Issues on Data Mining and Knowledge

Discovery, Madison, Wisconsin, June 2002.

[12]. J. Vaidya and C. Clifton. Privacy Preserving

Association Rule Mining in Vertically

Partitioned Data. In Proc. of the 8th ACM

SIGKDD Intl. Conf. on Knowlegde Discovery

and Data Mining, pages 639-644, Edmonton,

AB, Canada, July 2002.

[13]. J. Vaidya and C. Clifton. Privacy-Preserving K-

Means Clustering Over Vertically Partitioned

Data. In Proc. of the 9th ACM SIGKDD Intl.

Conf. on Knowlegde Discovery and Data

Mining, pages 206-215, Washington, DC, USA,

August 2003.

[14]. M. Kantarcioglu and J. Vaidya. Privacy

Preserving Naive Bayes Classifier for

Horizontally Partitioned Data. In Proc. of the

IEEE ICDM Workshop on Privacy Preserving

Data Mining, pages 3-9, Melbourne, FL, USA,

November 2003.

