
CSEIT1725202 | Received : 10 Oct 2017 | Accepted : 25 Oct 2017 | September-October-2017 [(2)5: 878-887]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2017 IJSRCSEIT | Volume 2 | Issue 5 | ISSN : 2456-3307

878

Network Simulator Version 2 for VANET
Venkatatamangarao Nampally*1, Dr. M. Raghavender Sharma2, Dr. K. R. Balaji3

*1Department of Computer Science, University College of Science, Osmania University, Hyderabad, Telangana, India
2Department of Statistics, University College of Science, Osmania University, Saifabad, Hyderabad, Telangana, India

3Department of Network Systems and Information Technology, University of Madras, Guindy Campus, Chennai, Tamil Nadu, India

ABSTRACT

A Network simulator is used in different areas such as academic research, industrial development, and Quality

Assurance (QA) to design, simulate, verify, and analyze the performance of different networks protocols.

Network simulators are also particularly useful in allowing the network designers to test new networking

protocols or to change the existing protocols in a controlled and reproducible manner. NS2 is often growing to

include new protocols. NS2 is an object-oriented simulator, written in C++, with an OTcl interpreter as a

frontend. In this paper we discuss NS2 simulator in detail.

Keywords : NS2, TCL, C++, NAM, Xgraph, and Ubuntu OS.

I. INTRODUCTION

Simulation is a very important modern technology.

Computer simulation can be used to assist the

modeling and analysis in many natural systems. NS

(Version 2) is an open source network simulation tool.

It is an object oriented, discrete event driven simulator

written in C++ and Otcl. The primary use of NS is in

network research to simulate various types of

wired/wireless local and wide area networks; to

implement network protocols such as TCP and UPD,

traffic source behaviour such as FTP, Telnet, Web,

CBR and VBR, router queue management mechanism

such as Drop Tail, RED and CBQ, routing algorithms

such as Dijkstra, and many more. Ns2 is written in

C++ and Otcl to separate the control and data path

implementations. The simulator supports a class

hierarchy in C++ (the compiled hierarchy) and a

corresponding hierarchy within the Otcl interpreter

(interpreted hierarchy). The reason why ns2 uses two

languages is that different tasks have different

requirements: For example simulation of protocols

requires efficient manipulation of bytes and packet

headers making the run-time speed very important.

On the other hand, in network studies where the aim

is to vary some parameters and to quickly examine a

number of scenarios the time to change the model and

run it again is more important. In ns2, C++ is used for

detailed protocol implementation and in general for

such cases where every packet of a flow has to be

processed. Otcl, on the other hand, is suitable for

configuration and setup. Otcl runs quite slowly, but it

can be changed very quickly making the construction

of simulations easier. In ns2, the compiled C++

objects can be made available to the Otcl interpreter.

In this way, the ready-made C++ objects can be

controlled from the OTcl level. The simulator

supports a class hierarchy in C++, and a similar class

hierarchy within the OTcl interpreter. The two

hierarchies are closely related to each other; from the

user‟s perspective, there is a one-to-one

correspondence between a class in the interpreted

hierarchy and one in the compiled hierarchy. Users

create new simulator objects through the interpreter;

these objects are instantiated within the interpreter,

and are closely mirrored by a corresponding object in

the compiled hierarchy. The interpreted class

hierarchy is automatically established through

methods defined in the class TclClass. It contains

three types of discrete event schedulers : list, heap and

hash-based calendar. NS2 also provides default

Volume 2 | Issue 5 | September-October-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718] 879

implementations for network nodes, links between

nodes, routing algorithms, some transport level

protocols (especially UDP and many different variants

of TCP) and some traffic generators. The simulator

can be extended by adding functionality to these

objects. NS2 also contains some useful utilities

include like Tcl debugger, simulation scenario

generator and simulation topology generator. Tcl

debugger is used to debug Tcl scripts and it might

become necessary if one is using large scripts to

control a simulation. Tcl-debug is not however

installed automatically with NS2 but it can be

installed later. One drawback of using Tcl-debug is

that it is dependent on used Tcl version and NS2

version. For topology generation there are four

choices: NTG, RTG, GT-ITM and TIERS packages.

With these topology generators, one can create large

network topologies without the need to define the

whole topology by hand. Simulation scenario

generator can be used to create traffic between nodes.

When simulating wireless networks, the scenario

generator can be used to generate files that define the

movement of nodes.

Figure 1. Simplified user‟s view of NS2

A. Features of NS2

NS2 are discrete simulation events aimed in networks

researches. It provides support for simulation of

Transmission Control Protocol (TCP) and it is one of

the core protocols of the Internet protocol suite. TCP

is one of the two original components of the suite,

complementing the Internet Protocol (IP), and

therefore the entire suite is commonly referred to as

TCP/IP, routing, and multicast protocols over all

networks including wired and wireless networks. NS2

can be employed in most UNIX and it is a

multitasking, multiuser computer operating systems

and windows (XP, VESTA and 7). Most of the NS2

code processing is in C++ language. It uses Terminal

Command Language (TCl) as its scripting language.

B. Programming Languages

The reason for having two programming languages is

to have an easy to use, yet fast and powerful simulator.

C++ forms an efficient class hierarchy core of NS2

that takes care of handling packets, headers and

algorithms. Object Tcl, or OTcl, is also an object

oriented programming language utilized in NS2 for

network scenario creation, allowing fast modifications

to scenario scripts. OTcl and C++ interact with each

other through Tcl/C++ interface calledTcl/C++.

Tcl/Otcl is a language with very simple syntaxes that

allows easy integration with other languages. Tcl was

created by JohnOusterhout. The characteristics of

these languages are :

• It allows a fast development.

• It provides a graphic interface.

• It is compatible with many platforms.

• It is flexible for integration.

• It is a scripting language.

Tcl in ns-2 enables full control over simulation setup,

configuration, and occasional actions (e.g. creating

new TCPflows). It is a language that compromise

between speed and abstraction level offered to the

user. In the scenario of this project the Tcl language

is used to design the network (set parameters, node

configurations, and topology, Connection between

nodes, transfer packages and simulation time).Further

more, C++ language is used for the security package

(encryption /decryption).

Figure 2. C++ and Tcl communication

The remainder of this paper is organized into as

follows: Section II contains a review of related work.

Section III explains Methodology, section IV

describes Conclusion of work. At last, we give

acknowledgements and references, which are used for

preparing this paper.

Volume 2 | Issue 5 | September-October-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718] 880

II. RELATED WORK

In the research area of computer and communications

networks, simulation is a useful technique since the

behaviour of a network can be modelled by

calculating the interaction between the different

network components (they can be end-host or network

entities such as routers, physical links or packets)

using mathematical formulas. .In order to understand

and simulate in NS2, we have to understand the

syntax and some basic commands of the TCL

language which is used by ns2 software given by

some literature survey. It is important to understand

how TCL works before moving to the part that deals

with the creation of the actual simulation scenario.

A. OTCL Basics

1) Assigning Values to Variables: In tcl, values can

be stored to variables and these values can be further

used in commands:

set a 5

set b [expr $a/5]

In the first line, the variable a is assigned the value

“5”. In the second line, the result of the command

[expr $a/5], which equals 1, is then used as an

argument to another command, which in turn assigns

a value to the variable b. The “$” sign is used to

obtain a value contained in a variable and square

brackets are an indication of a command substitution.

2) Procedures: One can define new procedures

with the proc command. The first argument to proc is

the name of the procedure and the second argument

contains the list of the argument names to that

procedure. For instance a procedure that calculates the

sum of two numbers can be defined as follows:

proc sum {a b} {

 expr $a + $b

}

The next procedure calculates the factorial of a

number:

proc factorial a {

 if {$a <= 1} {

 return 1

 }

#here the procedure is called again

expr $x * [factorial [expr $x-1]]

}

It is also possible to give an empty string as an

argument list. However, in this case the variables that

are used by the procedure have to be defined as global.

For instance:

proc sum {} {

global a b

expr $a + $b

}

3) Files and Lists: In tcl, a file can be opened for

reading with the command:

set testfile [open test.dat r]

The first line of the file can be stored to a list with

a command:

gets $testfile list

Now it is possible to obtain the elements of the

list with commands (numbering of elements starts

from 0):

set first [lindex $list 0]

set second [lindex $list 1]

Similarly, a file can be written with a puts

command:

set testfile [open test.dat w]

puts $testfile “testi”

4) Calling Sub processes: The command exec

creates a sub process and waits for it to complete. The

use of exec is similar to giving a command line to a

shell program. For instance, to remove a file:

exec rm $testfile

The exec command is particularly useful when one

wants to call a tcl-script from within another tclscript.

For instance, in order to run the tcl-script example.tcl

multiple times with the value of the parameter “test”

ranging from 1 to 10, one can type the following lines

to another tcl-script:

for {set ind 1} {$ind <= 10} {incr ind} {

set test $ind

exec ns example.tcl test

}

B. Simulation Parameters

When a new simulation object is created in tcl, the

initialization procedure performs the following

operations:

•initialize the packet format

Volume 2 | Issue 5 | September-October-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718] 881

•create a scheduler (defaults to a calendar scheduler)

•create a “null agent” (a discard sink used in various

places)

1) Creating topology: To be able to run a simulation

scenario, a network topology must first be created. In

ns2, the topology consists of a collection of nodes and

links. Before the topology can be set up, a new

simulator object must be created at the beginning of

the script with the command:

set ns [new Simulator]

The simulator object has member functions that

enable creating the nodes and the links, connecting

agents etc. All these basic functions can be found

from the class Simulator. When using functions

belonging to this class, the command begins with

“$ns”, since ns was defined to be a handle to the

Simulator object.

2) Creating nodes: New node objects can be created

with the command:

set n0 [$ns node]

set n1 [$ns node]

set n2 [$ns node]

set n3 [$ns node]

The member function of the Simulator class, called

“node” creates four nodes and assigns them to the

handles n0, n1, n2 and n3. These handles can later be

used when referring to the nodes. If the node is not a

router but an end system, traffic agents (TCP, UDP

etc.) and traffic sources (FTP,CBR etc.) must be set

up, i.e, sources need to be attached to the agents and

the agents to the nodes, respectively.

Figure 3.Structure of unicast node

3) Agents, Applications and Traffic Sources: The

most common agents used in ns2 are UDP and TCP

agents. In case of a TCP agent, several types are

available. The most common agent types are:

 Agent/TCP – a Tahoe TCP sender

 Agent/TCP/Reno – a Reno TCP sender

 Agent/TCP/Sack1 – TCP with selective

acknowledgement

The most common applications and traffic sources

provided by ns2 are:

Application/FTP – produces bulk data that TCP will

send

Application/Traffic/CBR – generates packets with a

constant bit rate

Application/Traffic/Exponential – during off-periods,

no traffic is sent. During on-periods, packets are

generated with a constant rate. The length of both on

and off-periods is exponentially distributed.

Application/Traffic/Trace – Traffic is generated from

a trace file, where the sizes and inter arrival times of

the packets are defined.

In addition to these ready-made applications, it is

possible to generate traffic by using the methods

provided by the class Agent. For example, if one

wants to send data over UDP, the method

send (int nbytes)

can be used at the tcl-level provided that the udp-

agent is first configured and attached to some node.

Below is a complete example of how to create a CBR

traffic source using UDP as transport protocol and

attach it to node n0:

set udp0 [new Agent/UDP]

$ns attach-agent $n0 $udp0

set cbr0 [new Application/Traffic/CBR]

$cbr0 attach-agent $udp0

$cbr0 set packet_size_ 1000

$udp0 set packet_size_ 1000

$cbr0 set rate_ 1000000

Volume 2 | Issue 5 | September-October-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718] 882

An FTP application using TCP as a transport protocol

can be created and attached to node n1 in much the

same way:

set tcp1 [new Agent/TCP]

$ns attach-agent $n1 $tcp1

set ftp1 [new Application/FTP]

$ftp1 attach-agent $tcp1

$tcp1 set packet_size_ 1000

The UDP and TCP classes are both child-classes of

the class Agent. With the expressions [new

Agent/TCP] and [new Agent/UDP] the properties of

these classes can be combined to the new objects

udp0 and tcp1. These objects are then attached to

nodes n0 and n1. Next, the application is defined and

attached to the transport protocol. Finally, the

configuration parameters of the traffic source are set.

The default value is 0, meaning that no randomness is

added. The TCP agent does not generate any

application data on its own: instead, the simulation

user can connect any traffic generation module to the

TCP agent to generate data. Two applications are

commonly used for TCP: FTP and telnet. FTP

represents a bulk data transfer of large size, and telnet

chooses its transfer sizes randomly from tcplib. There

are two major types of TCP agents : one-way agents

and a two-way agent.

One-way agents are further subdivided into a set of

TCP senders (which obey different congestion and

error control techniques) and receivers (sinks). The

two-way agent is symmetric in the sense that it

represents both a sender and receiver. It is still under

development.

4) Traffic Sinks: If the information flows are to be

terminated without processing, the udp and tcp

sources have to be connected with traffic sinks. A

TCP sink is defined in the class Agent/TCPSink and

an UDP sink is defined in the class Agent/Null. A

UDP sink can be attached to n2 and connected with

udp0 in the following way:

set null [new Agent/Null]

$ns attach-agent $n2 $null

$ns connect $udp0 $null

A standard TCP sink that creates one

acknowledgement per a received packet can be

attached to n3 and connected with tcp1 with the

commands:

set sink [new Agent/Sink]

$ns attach-agent $n3 $sink

$ns connect $tcp1 $sink

For example, to create a standard TCP connection

between n1 and n3 with a class ID of 1:

$ns create-connection TCP $n1 TCPSink $n3 1

One can very easily create several tcp-connections by

using this command inside a for-loop.

5) Links: Links are required to complete the

topology. In ns2, the output queue of a node is

implemented as part of the link, so when creating

links the user also has to define the queue-type.

Figure 4. Links in NS2

Figure shows the construction of a simplex link in

ns2. If a duplex-link is created, two simplex links will

be created, one for each direction. In the link, packet

is first enqueued at the queue. After this, it is either

dropped, passed to the Null Agent and freed there, or

dequeued and passed to the Delay object which

simulates the link delay. Finally, the TTL (time to live)

value is calculated and updated. Links can be created

with the following command:

$ns duplex/simplex-link endpoint1 endpoint2

bandwidth delay queue-type

For example, to create a duplex-link with DropTail

queue management between n0 and n2:

$ns duplex-link $n0 $n2 15Mb 10ms DropTail

Creating a simplex-link with RED queue management

between n1 and n3:

$ns simplex-link $n1 $n3 10Mb 5ms RED

The values for bandwidth can be given as a pure

number or by using qualifiers k (kilo), M (mega), b

(bit) and B (byte). The delay can also be expressed in

the same manner, by using m (milli) and u (mikro) as

qualifiers. There are several queue management

algorithms implemented in ns2, but in this exercise

only DropTail and RED will be needed.

Volume 2 | Issue 5 | September-October-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718] 883

Figure 5. Composite construction of a

unidirectional link

C. Tracing and Monitoring

In order to be able to calculate the results from the

simulations, the data has to be collected somehow.

NS2 supports two primary monitoring capabilities:

traces and monitors. The traces enable recording of

packets whenever an event such as packet drop or

arrival occurs in a queue or a link. The monitors

provide a means for collecting quantities, such as

number of packet drops or number of arrived packets

in the queue. The monitor can be used to collect these

quantities for all packets or just for a specified flow (a

flow monitor).

1) Traces : All events from the simulation can be

recorded to a file with the following commands:

set trace_all [open all.dat w]

$ns trace-all $trace_all

$ns flush-trace

close $trace_all

First, the output file is opened and a handle is attached

to it. Then the events are recorded to the file specified

by the handle. Finally, at the end of the simulation the

trace buffer has to be flushed and the file has to be

closed. This is usually done with a separate finish

procedure. If links are created after these commands,

additional objects for tracing (EnqT, DeqT, DrpT and

RecvT) will be inserted into them.

Figure 6.link in NS2 when tracing enabled

These new objects will then write to a trace file

whenever they receive a packet. The format of the

trace file is following:

+ 1.84375 0 2 cbr 210 ------- 0 0.0 3.1 225 610

- 1.84375 0 2 cbr 210 ------- 0 0.0 3.1 225 610

r 1.84471 2 1 cbr 210 ------- 1 3.0 1.0 195 600

r 1.84566 2 0 ack 40 ------- 2 3.2 0.1 82 602

+ 1.84566 0 2 tcp 1000 ------- 2 0.1 3.2 102 611

- 1.84566 0 2 tcp 1000 ------- 2 0.1 3.2 102 611

+ : enqueue

- : dequeue

d : drop

r : receive

The fields in the trace file are: type of the event,

simulation time when the event occurred, source and

destination nodes, packet type (protocol, action or

traffic source), packet size, flags, flow id, source and

destination addresses, sequence number and packet id.

In addition to tracing all events of the simulation, it is

also possible to create a trace object between a

particular source and a destination with the command:

$ns create-trace <type> <file> <src> <dest>

where the type can be, for instance,

Enque – a packet arrival (for instance at a queue)

Deque – a packet departure (for instance at a queue)

Drop – packet drop

Recv – packet receive at the destination

Tracing all events from a simulation to a specific file

and then calculating the desired quantities from this

file for instance by using perl or awk and Matlab is an

easy way and suitable when the topology is relatively

simple and the number of sources is limited. However,

with complex topologies and many sources this way

of collecting data can become too slow. The trace files

will also consume a significant amount of disk space.

2) Monitors: With a queue monitor it is possible to

track the statistics of arrivals, departures and drops in

either bytes or packets. Optionally the queue monitor

can also keep an integral of the queue size over time.

For instance, if there is a link between nodes n0 and

n1, the queue monitor can be set up as follows:

set qmon0 [$ns monitor-queue $n0 $n1]

The packet arrivals and byte drops can be tracked

with the commands:

Volume 2 | Issue 5 | September-October-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718] 884

set parr [$qmon0 set parrivals_]

set bdrop [$qmon0 set bdrops_]

Besides assigning a value to a variable the set

command can also be used to get the value of a

variable. For example here the set command is used to

get the value of the variable “parrivals” defined in the

queue monitor class. A flow monitor is similar to the

queue monitor but it keeps track of the statistics for a

flow rather than for aggregated traffic. A classifier

first determines which flow the packet belongs to and

then passes the packet to the flow monitor. The flow

monitor can be created and attached to a particular

link with the commands:

set fmon [$ns makeflowmon Fid]

$ns attach-fmon [$ns link $n1 $n3] $fmon

Notice that since these commands are related to the

creation of the flow-monitor, the commands are

defined in the Simulator class, not in the Flowmonitor

class. The variables and commands in the

Flowmonitor class can be used after the monitor is

created and attached to a link. For instance, to dump

the contents of the flowmonitor (all flows):

$fmon dump

If you want to track the statistics for a particular flow,

a classifier must be defined so that it selects the flow

based on its flow id, which could be for instance 1:

set fclassifier [$fmon classifier]

set flow [$fclassifier lookup auto 0 0 1]

D. Controlling of Simulation

After the simulation topology is created, agents are

configured etc., the start and stop of the simulation

and other events have to be scheduled. The simulation

can be started and stopped with the commands:

$ns at $simtime “finish”

$ns run

The first command schedules the procedure finish at

the end of the simulation, and the second command

actually starts the simulation. The finish procedure

has to be defined to flush the trace buffer, close the

trace files and terminate the program with the exit

routine. It can optionally start NAM (a graphical

network animator), post process information and plot

this information. The finish procedure has to contain

at least the following elements:

proc finish {} {

global ns trace_all

$ns flush-trace

close $trace_all

exit 0

}

Other events, such as the starting or stopping times of

the clients can be scheduled in the following way:

$ns at 0.0 “cbr0 start”

$ns at 50.0 “ftp1start”

$ns at $simtime “cbr0 stop”

$ns at $simtime “ftp1 stop”

If you have defined your own procedures, you can

also schedule the procedure to start for example every

5 seconds in the following way:

proc example {} {

global ns

set interval 5

….

…

$ns at [expr $now + $interval] “example”

}

III. METHODOLOGY

A. Extending NS: Creating a new Agent

One can extend NS by adding new protocols. One

node will send n user defined number packets, one at

a time at regular intervals, to another node which will

return the packet immediately. For each packet the

sender will then calculate the round trip time.

1) Header File : First, we have to create a header file

“myPing.h” in which we will define the data structure

for the myPing packet header. The char „ret‟ is going

to be set to '0' if the packet is on its way from the

sender to the node which is being pinged, while it is

going to be set to '1' on its way back. The double

'send_time' is a time stamp that is set on the packet

when it is sent. This time is later used by the sender to

calculate the round-trip-time. The rest of the part of

program codes of the header are used to access the

packet header from any packet reference.

B. Necessary Changes to NS2

Next step is to modify some of the NS system files so

that the newly written protocol or agent can work with

the simulator. The files that are needed to be modified

are shown within red bubbles in Figure .

Volume 2 | Issue 5 | September-October-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718] 885

Figure 7. Directory structure

1) Edit packet.h file: We need a new packet type for

our MyPing agent, therefore the first step is to modify

the “$NS/common/packet.h” file (assuming that the

$NS environment variable points the …./ns-allinone-

2.31/ns-2.31 location). There you can find the

definitions for the packet protocol IDs (i.e. PT_TCP,

PT_TELNET, etc.). Add a new definition for

PT_PING there. In my edited version of packet.h, the

last few lines of enum packet_t{} looks like the

following code (it might look a bit different in

different NS releases). You also have to edit the

p_info() in the same file to include "MyPing".

2) Edit ns-packet.tcl file: Now in “$NS/tcl/lib/ns-

packet.tcl” file search for the part foreach prot { .. }.

Within this part add an entry for MyPing.

3) Edit ns-default.tcl: The “$NS/tcl/lib/ns-default.tcl”

file is the file where all default values for the Tcl

objects are defined. Insert the following line to set the

default packet size, packet number and wait interval

for Agent/MyPing.

Agent/MyPing set packetSize_ 200

Agent/MyPing set num_packets_ 3

Agent/MyPing set wait_interval_ .001

4) Edit Makefile.in: The last change is a change that

has to be applied to the “$NS/Makefile.in”. You have

to add the file “myPing.o” to the list of object files for

ns.

C. Recompile NS

After the changes are done in the NS files we need to

recompile the NS simulator. To do so use the

following command:

droy@aggarpc3:~$ cd $NS

droy@aggarpc3:ns-2.31$ pwd

/usr/share/ns-allinone-2.31/ns-2.31

droy@aggarpc3:ns-2.31$ sudo ./configure

droy@aggarpc3:ns-2.31$ sudo make

After recompiling the NS simulator we can use our

MyPing agent in our simulations. Following code is

simple tcl program that uses the MyPing agent.

D. Notepad++

Notepad++ is a text editor and source code editor for

use with Microsoft Windows. It supports tabbed

editing, which allows working with multiple open

files in a single window. The project's name comes

from the C increment operator. Notepad++ is

distributed as free software. since 2015 Notepad++

has been hosted on GitHub. Notepad++ uses the

Scintilla editor component.

Figure 8.Notepad++ text editor

E. NAM (Network AniMator)

NAM is a Tcl/TK based animation tool for viewing

network simulation traces and real world packet

traces. It supports topology layout, packet level

animation, and various data inspection tools.

Figure 9.NAM in NS

https://en.wikipedia.org/wiki/Text_editor
https://en.wikipedia.org/wiki/Source_code_editor
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/Tab_(GUI)
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/Increment_operator
https://en.wikipedia.org/wiki/Free_software
https://en.wikipedia.org/wiki/GitHub
https://en.wikipedia.org/wiki/Scintilla_(software)

Volume 2 | Issue 5 | September-October-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718] 886

F. Xgraph

One part of the ns-allinone package is 'xgraph', a

plotting program which can be used to create graphic

representations of simulation results.

Figure 10. Xgraph in NS

IV. SIMULATION RESULTS

it is concluded that NS2 is most common used

simulator for obtaining accurate results. When we

crated VANET environment in NS2 simulator, we got

some results given below. Not only these results but

also we can get other results in the form of Xgraph.

Figure 11.Simple example in NS

Figure 12.NS2 graph specimen

V. CONCLUSION

We have learnt a lot about NS-2 and simulation

scenarios in ns2 and it is also a good experience to

work on ubuntu. In conclusion, we found out that

network simulator (NS2), is used as a tool to design

the result of the simulation are transfer information

secure between nodes.

VI. ACKNOWLEDGMENT

I will be thankful forever to the LORD

BAJARANGBALI for his boundless blessings

showered on me. I am very grateful and express my

heartfelt countless Namaste to most respectable and

my M.Phil. Guide and supervisor who are Dr. S.

Ananthi madam ji,B.E.,M.Tech.(IISC),Ph.D.,

Associate Professor, Department of Network Systems

and Information Technology, University of Madras,

Guindy Campus, Chennai for their constant support,

invaluable and inspiring guidance to the progress of

my paper work. Without madam ji, and Sir K.

Padmanabhan inspiration, definitely this paper work

would not have been possible.

I would like to express my heartfelt special thanks to

most respectable, emeritus and senior Prof. (ret.)

Dr.K.Padmanabhan, Former Head, CISL and

Emeritus Professor in AC Technology College, Anna

University for their kind support for carrying out this

paper work. I would like to express special thanks to

Prof. (ret.) Ramana Murthy M. V., Department of

Mathematics & Computer Science, University

College of Science, Osmania University, Hyderabad,

Telangana, and Prof. (ret.) Shankar B., Department of

Mathematics, University College of Science, Osmania

University, Hyderabad, Telangana and Radhakrishna

Peddiraju sir for clarifying my doubts On NS2

software to run on windows 7. I take this opportunity

to express my heartfelt thanks to Dr. K.R.Balaji

M.Sc.,M.Phil.,Ph.D. Department of NS & IT,

University of Madras, Guindy Campus, Chennai, and

Arun Ananthanarayanan, UGC research scholar,

Department of NS & IT, University of Madras,

Guindy Campus, Chennai for giving their constant

support and valuable help.

http://www.isi.edu/nsnam/ns/tutorial/index.html

Volume 2 | Issue 5 | September-October-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718] 887

VII. REFERENCES

[1]. Bidgoli H., "Handbook of Information Security",

john Wiley & Sons, Inc. Volume 1, 2006.

[2]. Andrea Goldsmith, Wireless Communications,

Cambridge UniversityPress, September 2005,

ISBN13: 9780521837163.

[3]. Altman, E.; Jiménez, T. (2003). NS Simulator for

beginners [Online]. Available:

citeseer.ist.psu.edu/altman03ns.html

[4]. Greis, Marc. Tutorial for the Network Simulator "ns"

[Online]. Available:

http://www.isi.edu/nsnam/ns/tutorial/

[5]. L. Breslau et al. Advances in network simulation.

IEEE Computer, 33(5):59-67, May 2000.

[6]. S. McCanne and S. Floyd. ns Network Simulator.

http://www.isi.edu/nsnam/ns/.

[7]. T. Issariyakul , and E. Hossain , "Introduction to

Network Simulator NS2," Springer, Oct. 2008,

ISBN: 978-0-387-71759-3.

[8]. [REAL] REAL 5.0 simulator overview,

http://www.cs.cornell.edu/skeshav/real/overview.ht

ml

AUTHORS

Dr. M. Raghavender Sharma

(drmrsstatou@gmail.com) pursed

Bachelor of Science in Mathematics,

Master of Science in Statistics, and

achieved Doctoral Degree in Statistics,

all degrees from Osmania University,

Hyderabad, Telangana, India, and

currently he is working as an Assistant

Professor and Head of Department, Department of

Statistics at University College of Science, Saifabad,

Osmania University, Hyderabad, Telangana, India. He is

supervising many Ph. D.‟s. He has excellent teaching track

record with 25 years teaching experience.

Dr. K. R. Balaji

(balajicisl@yahoo.com) has completed

M.sc, M.Phil., Ph.D. currently he is

working at University of Madras,

Guindy Campus, Chennai, Tamil

Nadu, India in the department of

network systems & information

technology. He is the author of several

papers. He has presented papers at the

National and Interactional conferences relating to

convolutional encoding and fuzzy based decoding as

alternative to Viterbi‟s decoder. His special interests are in

Telecommunication Engineering and Mobile wireless

sensor networks

Mr. Venkatamangarao Nampally

(n.venkat018@gmail.com) pursed

Bachelor of Science in Computer

Science, Master of Science in

Computer Science and Master of

Technology in Computer Science &

Engineering, all degrees from

Osmania University, Hyderabad, Telangana, India, and

pursed Master of Philosophy from University of madras,

Chennai, Tamil Nadu, India. His main research work

focuses on VANET communication. He has 7 years of

teaching experience and 2 year of Research Experience.

mailto:balajicisl@yahoo.com

