
CSEIT1172692 | Received : 15 Nov 2017 | Accepted : 30 Nov 2017 | November-December-2017 [(2)6: 491-499]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2017 IJSRCSEIT | Volume 2 | Issue 6 | ISSN : 2456-3307

491

An Enormous Inspection of MapReduce Technology
J. Rajesh Khanna

Assistant Professor, Department of CSE, BVRIT, Telangana, India

ABSTRACT

Since, the last three or four years, the field of “big data” has appeared as the new frontier in the wide spectrum of

IT-enabled innovations and favorable time allowed by the information revolution. Today, there is a raise necessity

to analyses very huge datasets, that have been coined big data, and in need of uniqueness storage and processing

infrastructures. MapReduce is a programming model the goal of processing big data in a parallel and distributed

manner. In MapReduce, the client describes a map function that processes a key/value pair to procreate a set of

intermediate value pairs & key, and a reduce function that merges all intermediate values be associated with the

same intermediate key. In this paper, we aimed to demonstrate a close-up view about MapReduce. The MapReduce

is a famous framework for data-intensive distributed computing of batch jobs. This is over-simplify fault tolerance,

many implementations of MapReduce materialize the overall output of every map and reduce task before it can be

consumed. Finally, we also discuss the comparison between RDBMS and MapReduce, and famous scheduling

algorithms in this field.

Keywords : Big Data, MapReduce, Scheduling, Processing Layer, Indexing, Data Layout.

I. INTRODUCTION

Today the volume of data being generated globally is

increasing at a [1] dramatic rate. The enormous amount

of data is rising everywhere due to advances in the [2]

Internet and communication technologies and the

interests of people using social media, Internet of

Things, smart phones, sensor devices, online services

and many more. The essential to manage efficiently the

exponentially growing dataset is increasing each and

every day. For examples, International Data

Corporation (IDC) announces that 2.9 ZB (zettabytes)

data of the universe were stored during the year of 2012

and this will increase up to 45 ZB by 2020 [3].

Correspondingly, Facebook processes around 550 TB

(terabytes) data every day and Twitter generates 9 TB

data day-to-day [4, 5]. The larger datasets don’t only

include a structured form of data but more than 75% of

the dataset includes semi-structured, unstructured and

raw form of data. The conventional data management

tools such as the RDBMS, no longer prove to be

adequate in handling this burst in data. This report

gives an overview of the new ways to maintain such

large datasets [6] by iterating over the MapReduce

technique. In this survey paper, we review the

background and state-of-the-art the MapReduce. The

MapReduce [7] is a distributed computing model

proposed by Google. The main purpose of MapReduce

is to process volumetric data sets distributed and

paralleled. It endows a programming model in which

users can specify a map function that processes a

key/value pair to originate a set of intermediate

key/value pairs, and a detract function that merges all

intermediate values related the same intermediate key

[8]. The Map-Reduce has become a renowned model

for developments in cloud computing. MapReduce is a

programming model and an allied implementation for

processing and generating spacious datasets that is

responsible for a broad variety of real-world tasks[2, 6,

7].

The first section is the introduction of Big Data. The

second section comparison between MapReduce and

RDBMS. The third section discusses MapReduce. The

fourth section about F footstep of MapReduce. In fifth

section MapReduce execution. Again sixth section

MapReduce framework and its components. The

seventh section MapReduce user interfaces and eighth

section MapReduce procedures . In the nine sections

MapReduce performance and ten sections MapReduce

scheduling algorithms. Finally, last section is

Volume 2, Issue 6, November-December-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 492

conclusion.

II. COMPARISON BETWEEN THE RDBMS

AND MAPREDUCE

The RDBMS is convenient for an application where

data size is limited like it's in GBs, whereas

MapReduce convenient for an application where data

size is in Exabyte [2]. If the data access pattern is

dominated by seeks, it will take longer to read or write

huge portions of the datasets than streaming through it,

which operates at the transfer rate. On the contrary, for

updating a miniature portion of records in a database, a

traditional B-Tree works well. If updating the majority

of a database, a B-tree is less lower than MapReduce,

[9] which uses merge as well as sort to rebuild the

database. MapReduce acceptable in an application

where the data is written once and read numerous times

much the same in your Facebook profile you post your

photo once and that picture of your seen by your

friends numerous times, whereas RDBMS good for

data sets that are incessant updated [10].

The structured data is data that is organized into

entities that have a defined format, namely XML

documents or database tables that correspond to a

distinctive predefines schema. In semi-structured data,

is looser, and though there may be a schema, it is

frequently ignored, so it may be used as a guide to the

structure of the data for instance, a spreadsheet, in

which the structure is the grid of the cells, although the

cells yourself may hold any form of data. However,

unstructured data does not have any particular internal

structure, for instance plain text or image data [2, 11].

MapReduce works well on any type of unstructured or

semi-structured data, since it is designed to interpret

the data at processing time. Eventually the RDBMS

scaling is nonlinear, whereas MapReduce is linear.

Table 1. The Compared between RDBMS and

MapReduce

III. THE MAPREDUCE

The MapReduce is a framework for supporting the

parallel processing of enormous amounts of

unstructured data. In MapReduce incorporate [6] both a

model to structure the computation and a runtime to

parallelize the computation on a cluster of workstations

in a fault-tolerant manner. The MapReduce can be seen

as a programming exemplar to write applications that

can be decomposed in [12, 13]a phase Map and a phase

Reduce. MapReduce is a programming model

revolutionary by higher-order functions map and

reduce commonly found in functional languages. In the

circumstance functional programming, the map

function enforces a given function to each element of a

given list and return the new list. The reduce function

provides all the elements of a list by applying a given

function to an element and a partial outcome. In spite

of, a lot more than this to make these phases happen

easily. Every possible computing node has to access the

data it process [13]. To remain on the platform, this

may be done in multiple ways. The data may

beforehand be directly accessible to the nodes or may

need to be scattered or re-balanced. The data are then

echeloned in key-value pairs. This part is normally not

accounted when assess the performance of a

MapReduce application.

Figure 1. The Normal Workflow of a MapReduce

IV. THE FOOTSTEP OF MAPREDUCE

The input data is automatically isolated by the

MapReduce library into pieces, called splits. Each Map

task processes a single split, consequently M splits

entails M Map tasks. Again Map phase consists in

having Mappers read the corresponding splits and

production intermediate key/value pairs [1]. Usually,

the Mapper uses a subsidiary input reader to read the

Volume 2, Issue 6, November-December-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 493

raw input data. The objective of the reader is to convert

the input [13] to a key/value pairs amenable to be

processed by the Map function. The MapReduce

framework to endorsement a diversification of [6, 12]

jobs that are not tied to any specific input format. After

the Map phase, a segmentation function is applied over

the intermediate key space to divide it into R

segmentation, each one to be processed in a Reduce

task after that both R and the segmentation function can

be configured by the user.

 Task Assignment - The input data are echeloned

into splits and, for each split, the master creates a

Map task and allocate it to a worker.

 Input Reader - Every Map task executes a function

to extract the key/value pairs from the raw data

internally the splits.

 Map Function - Every key/value pair is fed into

the user-defined Map function that can production

zero, one or more intermediate key/value pairs.

These pairs represent a temporary outcome, the

intermediate data are kept in the local disks of the

Mappers.

 Shuffle Phase - The median key/value pairs are

assigned to Reducers by means of a segmentation

function in a manner such that all median key/value

pairs with the same median key will be processed

by the same detract task and hence by the same

Reducer. These median key/value pairs are spread

at random across the cluster, the master passes to

Reducers the information about the Mappers's

location, because each Reducer may be able to

remotely read its input.

Figure 2. The Genral Footstep of MapReduce

 Combiner Phase (Optional) - If the user-defined

detract function is exchangeable and associative,

and there is a remarkable repetition of intermediate

keys produced by each Mapper, an optional user-

defined combiner function can be applied to the

outputs of the Mapper [12]. The aim is to group, in

pursuance of the intermediate key, all the

intermediate values that were produced by the Map

tasks of each Mapper. Normally, the same Reduce

function code is used for the combiner function. If

this combiner function is applied, each Mapper

outputs only one median value per median key

[13].

 Reduce Function - Every Reducer passes the

assigned median keys, and the corresponding set of

median values, to the user-defined decrease

function. The output of the reducers is stored in the

global file system for lastingness.

 Sort & Group - When the remote reads are ended,

each Reducer sort the median data in order to group

all its input pairs by their median keys.

V. A MAPREDUCE EXECUTION

The Apache Hadoop is the most famous open-source

implementation of the MapReduce framework [2]. It is

written in Java and has received contributions from big

companies such as Facebook and others. The Google's

MapReduce, Hadoop also employs two dissimilar

layers. The Hadoop MapReduce Framework, a

processing layer accountable for running MapReduce

jobs and the HDFS, a distributed storage layer

accountable for compatible storing the data among the

cluster nodes.

A. Processing Layer

The entities associated with the processing layer are

one master, named the JobTracker, and one or more

workers, named the TaskTrackers. The main

contribution of the JobTracker is to coordinate all the

jobs running on the system and to allocate tasks to run

on the TaskTrackers which periodically report to the

JobTracker the headway of their running tasks. The

Hadoop's scheduler makes each job [13] use the entire

cluster and takes the jobs' priorities into account when

scheduling them. This means that topmost priority jobs

will run first. In spite of, Hadoop also supports other

schedulers, including shared cluster schedulers that

allow running jobs from several users at the same time.

Volume 2, Issue 6, November-December-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 494

In view of task scheduling, Hadoop does not build an a

priori plan to set up which tasks are going to run on

which nodes instead Hadoop take the plunge on which

nodes to deploy each task in runtime. Example for

employe nikhat a task, it is assigned the next one [14].

This means that should an employer nikhat all tasks

related the data it stores locally, it may be fed tasks

which entail acquire data from other workers. There are

ten dissimilar places in the query-execution pipeline of

Hadoop where User Defined Functions (UDFs) may be

injected. A user of the framework can define how the

input data is divided and how a divided is parsed into

key/value pairs, for example. This side makes Hadoop

is comfortably customizable MapReduce framework.

B. Storage Layer

The Hadoop DFS (HDFS) is a distributed file system

designed to store unswerving less, i.e., once the data is

written into the HDFS is not converted but can be read

many times. The HFDS implementation uses three

various entities first one NameNode, second one

secondary NameNode and thired one or more

DataNodes. A NameNode in charge of for storing the

metadata of all lies in the distributed file system. In

order to recover the metadata files in case of a

NameNode lack of success, the SecondaryNameNode

keeps a copy of the most recent checkpoint of the

lesystem metadata.

Every file in HDFS is echeloned into various fixed-size

blocks, similar that each block is stored on any of the

DataNodes. Hadoop replicates each block places them

strategically in order to make better availability two

replicas on DataNodes on the same rack and the third

one on a various rack, to inhibit from loss of data,

should an entire rack be liquidated. It is worth noting

the difference between input divided and HDFS blocks.

As long as an HDFS block is an indivisible part of a

file that is stored in each node, an input divided is

logical data that is processed by a Map task. There is

no necessity for divided to be tied to blocks, and not

even less.

Think about the case where a file is divided by lines,

such that each Map task processes one line. It may

come about that a line over us from an HDFS block,

i.e., the divided boundaries do not coincide with the

HDFS block boundaries. In this situation, the Mapper

processing that line must retrieve the next HDFS block

to receive the final part of the line.

VI. THE MAPREDUCE FRAMEWORK AND IT’S

COMPONENTS

The MapReduce is a programming model and an allied

implementation for processing and generating

volumetric data sets. Assume that programs written in

this functional manner MapReduce are automatically

parallelized and executed on a spacious cluster of

commodity machines [15, 16]. In a primary

MapReduce job, it consists of the following

components.

Figure 3. The Architecture & Components of

MapReduce

Job Client – This is submits MapReduce jobs to job

tracker.

Job Tracker – This is one part of a master node and it

allocates job to task tracker.

Task Tracker – This is one part of slave node and it

track all task data. As soon as finished the task

informed to job tracker.

Pay Load – This is one type of applications, notably

designed for MapReduce functions.

Mapper – This is the prime intention of the mapper is

mapping the input data to intermediate key/value pairs.

Name Node – This is managing the HDFS Data.

Data Node – This is searched advance data are

attendance in processing places.

Master Node – This is the prime intention of Master

node is receiving job data from clients.

Slavenode – This is runs Map and Reduce jobs.

VII. THE MAPREDUCE USER INTERFACES

Volume 2, Issue 6, November-December-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 495

In this section provides some detail about user-facing

aspects of the MapReduce framework. This helps you

implement, configure, and tune your jobs in a fine-

grained way.

Payload - In payload applications normally implement

the Mapper and Reducer interfaces to provide the map

and reduce methods. These form the core of the job.

Job Configuration - In JobConf describe a MapReduce

job configuration. JobConf is the primary interface for

a user to mention a MapReduce job to the Hadoop

framework for execution. The framework tries to

honestly execute the job as mentioned by JobConf.

Task Execution & Environment - The TaskTracker

executes the Mapper/ Reducer task as a child process in

a distinct jvm. After that child-task inherits the

environment of the parent TaskTracker. The user can

describe supplementary options to the child-jvm via the

mapred.

Job Submission and Monitoring - The Job is the

primary interface by which a user job communicates

with the Resource Manager. Job provides

condescension to submit jobs, track their progress,

access component task reports and logs, and get

MapReduce cluster status details.

Job Input - In the input format represents the input

identification for a MapReduce job. The MapReduce

framework relies on the input format of the job too.

Again validate the input specification of the job. After

that divide the input file into logical input, divide

instances, each of which is then assigned to a personal

Mapper. Again the RecordReader implementation used

to gather input records from the logical input, divide

for processing by the Mapper.

Job Output - In the output format represents the output

identification for a MapReduce job. The MapReduce

framework relies on the output format of the job too.

Again validate the output specification of the job for

example, inspection that the output directory does not

previously alive.

VIII. THE MAPREDUCE PROCEDURES

In this paper, we are discuss about two different

MapReduce procedures firstly the single-job

procedure, in which subdivide of work to tasks is done

without taking document sizes into account and

secondly the chain-job procedure, in which a first job

downloads the documents (take the plunge their sizes)

and performs some preparatory entity-mining, while a

second job (chained with the first) sustain the mining

over size-aware division of the contents to produce the

accomplished NEM analysis.

A. Single Job Procedure

In the single-job procedure includes an initial stage that

queries a search engine to receive the hits to be

processed and prefabricate the distribution of tasks,

followed by a subsequent stage of the MapReduce job

itself, both shown in figure 4. Here master node (where

the JobTracker executes) carries out preliminary

processing. First, it queries a Web Search Engine,

which comeback a set of titles, URLs, and snippets [17]

etc. Subsequently, the master attempt to determine the

URL content length, in order to preferable balance the

downloading and processing of the URL contents in the

MapReduce job. Again instate this is to perform an

HTTP HEAD request for each URL earlier to

downloading it. These processes again and again pops

the top of the stack and inserts it to the divide with the

least total size, until the stack is empty. When the

assignment of URLs is finished the produced divide are

stored in HDFS. At the subsequent stage of the single-

job procedure a number of mapper tasks are indite on a

number of JVMs hosted by Cloud VMs.

Figure 4. Single-job design

B. Chain Job Procedure

Volume 2, Issue 6, November-December-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 496

We have evolved a substitute MapReduce procedure

that consists of two chained jobs (Jobs #1 and #2) as

shown in figure 5. The appropriateness behind this

design is the following Job #1 downloads the

exhaustive document set and thus gains exact

information [18] about content sizes. Here upon Job #2

is now capable of performing a size-aware assignment

of the remaining documents to tasks. At the same

moment, we have confidence that most users

panegyrize a quick NEM preview on a sample of the

hits before getting the full-scale analysis. In Job #1 is

designed to carry out such a preview the master node

queries the search engine getting the beginning set of

titles, URLs, and snippets. Then, it creates the

beginning divided of the URLs without using any

information about their sizes. Eventual after Job#1

tasks in the first instance downloading documents

while performing only limited-scale NEM analysis,

there is no requirement to create much tasks than the

number of JVM slots approachable.

Figure 5. Chain-job design

IX. THE MAPREDUCE PERFORMANCE

The MapReduce may not endow the desired

performance in inappreciable use cases, such as the

selection scenario. In this section we describe the most

pertinent of these techniques, like that indexing, data

layouts, and co-location, which purpose at improving

data accesses during the Map phase of selective query

process.

A. Indexing

In a plain MapReduce framework, the execution of a

job need that a full scan of the dataset is performed

(example for reading all the records one by one) further

if only a small subset of them is going to be selected.

Additionally, all partitioned generate Map tasks even if

some of them do not contain pertinent data and will not

create any intermediate data. As well, in the Map

phase, all blocks have to be perfectly

fetched from disk, which insinuate that all attributes of

all records are fetched to main memory without taking

into account which ones the job is fascinated in [19].

This issue can keep away from if the input data are

indexed before the mapping step takes place.

Momentarily, an index is built for one attribute and

consists in a list of various values of that attribute

contained in the indexed data, as well as possible the

positions where these values can be found in the input

file.

 Record Level Indexing

Commonly, this access requires having the index inside

each partition, which is then used at query time to

select the applicable records from the partition, instead

of reading the entire partition record by record [20].

 Split Level Indexing

It has been attention that the execution time of a query

depends on the number of waves of Map tasks that are

executed, which in turn depends on the number of

processed partition [21]. Additionally, the time to

process a partition is dominated by the I/O time for

reading its dataplus the overhead of commencement

the Map task to process it.

 Block Level Indexing

In this case where the partition is comprised of several

blocks, one can create block-level indexes. All blocks

contain several records, these indexes have the

potential to bring meaningful time savings, in

pursuance of to the monitoring [21] block-level

indexes map attributes values to blocks that contain at

least one record with that attributes value. By means of

these indexes, when processing a partition, the

applicable blocks are loaded and processed, whereas

the blocks familiar not to match the selection

specification are omitted.

B. Data Layout

Volume 2, Issue 6, November-December-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 497

The storage unit of HDFS consists in a fixed-size

(generically 64MB to 96MB) block of data. Actually,

the way the data are arranged within this block of data

can much affect the repercussion times of the system.

Now we call this inner organization of blocks the data

layout. We now familiarize four various data layouts

that may be applied on MapReduce.

Row Oriented

When utilization this layout all fields of one record are

stored sequentially in the file, and several records are

placed contiguously in the disk blocks. This layout

endows rapidly data loading in many cases, the data to

be stored is endow row-by-row, that means one entire

record at a time. In Row-based systems are designed to

adroitly process queries where several columns of a

record required to be processed at the same time, the

entire row can be brought back with a single access to

the disk.

Column Oriented

When utilization this layout, datasets are vertically split

by column, each column is stored independently and

accessed only when the corresponding attribute is

required. In this layout is well favorable for read

operations that accessed a mini number of columns,

since columns that are not applicable for the intended

output are not read. As an outcome, record

reconstruction may need network transfers to access the

needed columns from various storage nodes.

Column Groups

In this layout consists in organizing all columns of a

dataset in various groups of columns. The various

column groups may have overlapping columns. The

data within each column group is not connected to any

particular data layout. It seems stored in a row or

column-oriented way. A benefit of column groups is

that it can keep away from the overhead of record

reconstruction if a query desire an existing

amalgamation of columns.

PAX

In this hybrid layout combines the [22] benefit of both

row-oriented and column-oriented layouts. Every field

of a record is on the same block as the row-oriented

layout, make provision for low cost of record

reconstruction. In spite of, within each disk page

containing the block, PAX uses mini pages to group

every values affiliation to each column.

X. MAPREDUCE SCHEDULING ALGORITHMS

In this section, we describe briefly scheduling

algorithms is one of the most critical dimensions of

MapReduce. There are many algorithms to address

these matters with different techniques and outlook.

Now a few of them get attention to improve data

locality and few of them implements to provide

synchronization processing.

A. Fair Scheduling Algorithm

The Fair scheduling is a method of assigning resources

to jobs such that all jobs get on usual, an identical share

of resources over time. Meanwhile a single job

running, that job uses the entire cluster. When

additional jobs are submitted tasks slots that free up are

assigned to the recent jobs, because each job gets

approximately the same amount of CPU time.

Dissimilar the lapse Hadoop scheduler, which forms a

queue of jobs, this lets, short jobs finish in pertinent

time while not starving long jobs. It is also a simple

way to [23] share a cluster between several of the

others. The Fair Scheduler algorithm can range the

number of concurrent running jobs [24] per user and

per pool. This can be advantageous when a user must

submit hundreds of jobs at one time, or to make sure

that intermediate data does not fill up disk space on a

cluster when too many simultaneous jobs are running.

B. Hadoop On Demand (HOD) Scheduling Algorithm

In this Hadoop On Demand (HOD) Scheduling

Algorithm is a system for provisioning and managing

unconstrained Hadoop MapReduce and Hadoop

Distributed File System (HDFS) example on a shared

cluster of nodes. These algorithms make it convenient

for administrators and users to quickly setup and use

Hadoop. The HOD is also a very advantageous tool for

Hadoop developers and testers who requirement to

share a physical cluster for testing their own Hadoop

versions [23]. The HOD utilization the torque resource

manager to do node allocation. In the allocated nodes,

it can start Hadoop MapReduce and HDFS daemons. It

Volume 2, Issue 6, November-December-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 498

automatically originates the convenient configuration

files (Hadoop-site.xml) for the Hadoop daemons and

client. This algorithm also has the ability to distribute

Hadoop to the nodes in the virtual cluster that it

allocates.

C. Capacity Scheduler Algorithm

In this algorithm contrive to run Hadoop Map-Reduce

as a shared, multi-tenant cluster in an operational

affable manner while maximizing the throughput and

the usage of the cluster while running Map-Reduce

applications. This algorithm to allow sharing a huge

cluster while giving every company a minimum

capacity promise. The central idea is that the available

resources [25, 23] in the Hadoop Map-Reduce cluster

segregates among multiple organizations who

collectively fund the cluster based on computing

necessity. There is an added gain that a company can

access any excess competence now being used by

others. This endow elasticity for the company in a cost-

effective manner.

D. Center-of-Gravity Reduce Scheduler Algorithm

The Center-of-Gravity reduce scheduler algorithm to

work designing a locality-aware, skew-aware alleviate

task scheduler for reduction MapReduce network

traffic [26]. The proposed scheduler algorithm attempts

to schedule every alleviate the task at its center-of-

gravity node laid down [27] by the network locations.

Regarding scheduling reducers at their center-of-

gravity nodes, they argue for reduce network traffic,

which may possibly allow more MapReduce jobs to

stick together on the same system [28].

XI. CONCLUSION

In the real world, data processing and storage

approaches are facing many challenges in meeting the

persistently increasing insistence of big data. Thus, it

becomes greatly challenging to operate on the

enormous data. In the Big data area, MapReduce is one

of the key approaches used for nursing giant data sets.

MapReduce was introduced to extricate volumetric

data, computational problems, and in particular

designed to run on commodity hardware and its based

on divide and conquer principles. This is because of its

appreciable flexibility, which allows automatic

parallelization and execution on a huge-scale cluster

with more than thousands of nodes. In this paper,

presents MapReduce concepts, footstep of MapReduce,

execution of MapReduce, MapReduce framework and

its components, we also highlight the MapReduce user

interfaces. Finally, we investigated the procedures,

performance, scheduling algorithms in MapReduce.

These surveys aim to provide an extensive overview

and big-picture to readers of this exciting area.

XII. REFERENCES

[1]. Kim, G.-H., Trimi, S., & Chung, J.-H. (2014).

Big-data applications in the government sector.

Communicationsof the ACM, 57(3), pp 78–85.

[2]. Dr. Yusuf Perwej, "An Experiential Study of the

Big Data," for published in the International

Transaction of Electrical and Computer

Engineers System (ITECES), USA, ISSN (Print):

2373-1273 ISSN (Online): 2373-1281, Vol. 4,

No. 1, page 14-25, March 2017,

DOI:10.12691/iteces-4-1-3.

[3]. R. Murugesh, I. Meenatchi, "A Study Using PI

on: Sorting Structured Big Data In Distributed

Environment Using Apache Hadoop

MapReduce", International Journal of Computer

Sciences and Engineering, Vol.2, Issue.8, pp.35-

38, 2014.

[4]. "Apache Hadoop," Apache. Online]. Available:

http://hadoop.apache.org/. Accessed: 18-Feb-

2015].

[5]. M. Khan, P. M. Ashton, M. Li, G. A. Taylor, I.

Pisica, and J. Liu, "Parallel Detrended

Fluctuation Analysis for Fast Event Detection on

Massive PMU Data," Smart Grid, IEEE Trans.,

vol. 6, no. 1, pp. 360–368, Jan. 2015.

[6]. K. Parimala1 G. Rajkumar, A. Ruba, S.

Vijayalakshmi, "Challenges and Opportunities

with Big Data", International Journal of

Scientific Research in Computer Science and

Engineering, Vol.5, Issue.5, pp.16-20, 2017.

[7]. Lee, D., Kim, J.-S., & Maeng, S. "Large-scale

incremental processing with MapReduce", Future

Generation Computer Systems, 36, pp 66–79,

(2014), doi:10.1016/j.future.2013.09.010.

[8]. M. Khan, M. Li, P. Ashton, G. Taylor, and J. Liu,

"Big data analytics on PMU measurements," in

Fuzzy Systems and Knowledge Discovery

(FSKD), 2014 11th International Conference on,

2014, pp. pp 715–719.

Volume 2, Issue 6, November-December-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 499

[9]. Qi, C., Cheng, L., & Zhen, X. (2014). Improving

mapreduce performance using smart speculative

execution strategy. IEEE Transactions on

Computers, Vol. 63(4), pp 954–967.

Doi:10.1109/TC.2013.15.

[10]. J. Kwon, K. Park, D. Lee, S. Lee, PSR: Pre-

computing Solutions in RDBMS for Fast Web

services Composition Search, in: Proceedings of

the 2nd International Conference on Web

Services, Salt Lake City, Utah, USA, ICWS

2007, pp. 808-815.

