
CSEIT1172692 | Received : 15 Nov 2017 | Accepted : 30 Nov 2017 | November-December-2017 [(2)6: 491-499] 

 

International Journal of Scientific Research in Computer Science, Engineering and Information Technology 

© 2017 IJSRCSEIT | Volume 2 | Issue 6 | ISSN : 2456-3307 

 

491 

An Enormous Inspection of MapReduce Technology 
J. Rajesh Khanna 

Assistant Professor, Department of CSE, BVRIT, Telangana, India 

 

ABSTRACT 
 

Since, the last three or four years, the field of “big data” has appeared as the new frontier in the wide spectrum of 

IT-enabled innovations and favorable time allowed by the information revolution. Today, there is a raise necessity 

to analyses very huge datasets, that have been coined big data, and in need of uniqueness storage and processing 

infrastructures. MapReduce is a programming model the goal of processing big data in a parallel and distributed 

manner. In MapReduce, the client describes a map function that processes a key/value pair to procreate a set of 

intermediate value pairs & key, and a reduce function that merges all intermediate values be associated with the 

same intermediate key. In this paper, we aimed to demonstrate a close-up view about MapReduce. The MapReduce 

is a famous framework for data-intensive distributed computing of batch jobs. This is over-simplify fault tolerance, 

many implementations of MapReduce materialize the overall output of every map and reduce task before it can be 

consumed. Finally, we also discuss the comparison between RDBMS and MapReduce, and famous scheduling 

algorithms in this field. 

Keywords :  Big Data, MapReduce, Scheduling, Processing Layer, Indexing, Data Layout. 

 

I. INTRODUCTION 

 
Today the volume of data being generated globally is 

increasing at a [1] dramatic rate. The enormous amount 

of data is rising everywhere due to advances in the [2] 

Internet and communication technologies and the 

interests of people using social media, Internet of 

Things, smart phones, sensor devices, online services 

and many more. The essential to manage efficiently the 

exponentially growing dataset is increasing each and 

every day. For examples, International Data 

Corporation (IDC) announces that 2.9 ZB (zettabytes) 

data of the universe were stored during the year of 2012 

and this will increase up to 45 ZB by 2020 [3]. 

Correspondingly, Facebook processes around 550 TB 

(terabytes) data every day and Twitter generates 9 TB 

data day-to-day [4, 5]. The larger datasets don’t only 

include a structured form of data but more than 75% of 

the dataset includes semi-structured, unstructured and 

raw form of data. The conventional data management 

tools such as the RDBMS, no longer prove to be 

adequate in handling this burst in data. This report 

gives an overview of the new ways to maintain such 

large datasets [6] by iterating over the MapReduce 

technique. In this survey paper, we review the 

background and state-of-the-art the MapReduce. The 

MapReduce [7] is a distributed computing model 

proposed by Google. The main purpose of MapReduce 

is to process volumetric data sets distributed and 

paralleled. It endows a programming model in which 

users can specify a map function that processes a 

key/value pair to originate a set of intermediate 

key/value pairs, and a detract function that merges all 

intermediate values related the same intermediate key 

[8]. The Map-Reduce has become a renowned model 

for developments in cloud computing. MapReduce is a 

programming model and an allied implementation for 

processing and generating spacious datasets that is 

responsible for a broad variety of real-world tasks[2, 6, 

7]. 

 

The first section is the introduction of Big Data. The 

second section comparison between MapReduce and 

RDBMS. The third section discusses MapReduce. The 

fourth section about F footstep of MapReduce. In fifth 

section MapReduce execution. Again sixth section 

MapReduce framework and its components. The 

seventh section MapReduce user interfaces and eighth 

section MapReduce procedures . In the nine sections 

MapReduce performance and ten sections MapReduce 

scheduling algorithms. Finally, last section is 
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conclusion. 

 

II. COMPARISON BETWEEN THE RDBMS 

AND MAPREDUCE 
 

The RDBMS is convenient for an application where 

data size is limited like it's in GBs, whereas 

MapReduce convenient for an application where data 

size is in Exabyte [2]. If the data access pattern is 

dominated by seeks, it will take longer to read or write 

huge portions of the datasets than streaming through it, 

which operates at the transfer rate. On the contrary, for 

updating a miniature portion of records in a database, a 

traditional B-Tree works well. If updating the majority 

of a database, a B-tree is less lower than MapReduce, 

[9] which uses merge as well as sort to rebuild the 

database. MapReduce acceptable in an application 

where the data is written once and read numerous times 

much the same in your Facebook profile you post your 

photo once and that picture of your seen by your 

friends numerous times, whereas RDBMS good for 

data sets that are incessant updated [10].  

 

The structured data is data that is organized into 

entities that have a defined format, namely XML 

documents or database tables that correspond to a 

distinctive predefines schema. In semi-structured data, 

is looser, and though there may be a schema, it is 

frequently ignored, so it may be used as a guide to the 

structure of the data for instance, a spreadsheet, in 

which the structure is the grid of the cells, although the 

cells yourself may hold any form of data. However, 

unstructured data does not have any particular internal 

structure, for instance plain text or image data [2, 11]. 

MapReduce works well on any type of unstructured or 

semi-structured data, since it is designed to interpret 

the data at processing time. Eventually the RDBMS 

scaling is nonlinear, whereas MapReduce is linear. 

Table 1. The Compared between RDBMS and 

MapReduce 

 

 

 

 

 

 

 

 

 

III. THE MAPREDUCE 

 

The MapReduce is a framework for supporting the 

parallel processing of enormous amounts of 

unstructured data. In MapReduce incorporate [6] both a 

model to structure the computation and a runtime to 

parallelize the computation on a cluster of workstations 

in a fault-tolerant manner. The MapReduce can be seen 

as a programming exemplar to write applications that 

can be decomposed in [12, 13]a phase Map and a phase 

Reduce. MapReduce is a programming model 

revolutionary by higher-order functions map and 

reduce commonly found in functional languages. In the 

circumstance functional programming, the map 

function enforces a given function to each element of a 

given list and return the new list. The reduce function 

provides all the elements of a list by applying a given 

function to an element and a partial outcome. In spite 

of, a lot more than this to make these phases happen 

easily. Every possible computing node has to access the 

data it process [13]. To remain on the platform, this 

may be done in multiple ways. The data may 

beforehand be directly accessible to the nodes or may 

need to be scattered or re-balanced. The data are then 

echeloned in key-value pairs. This part is normally not 

accounted when assess the performance of a 

MapReduce application. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The Normal Workflow of a MapReduce 

 

IV. THE FOOTSTEP OF MAPREDUCE 
 

The input data is automatically isolated by the 

MapReduce library into pieces, called splits. Each Map 

task processes a single split, consequently M splits 

entails M Map tasks. Again Map phase consists in 

having Mappers read the corresponding splits and 

production intermediate key/value pairs [1]. Usually, 

the Mapper uses a subsidiary input reader to read the 
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raw input data. The objective of the reader is to convert 

the input [13] to a key/value pairs amenable to be 

processed by the Map function. The MapReduce 

framework to endorsement a diversification of [6, 12] 

jobs that are not tied to any specific input format. After 

the Map phase, a segmentation function is applied over 

the intermediate key space to divide it into R 

segmentation, each one to be processed in a Reduce 

task after that both R and the segmentation function can 

be configured by the user. 

 

 Task Assignment - The input data are echeloned 

into splits and, for each split, the master creates a 

Map task and allocate it to a worker. 

 Input Reader - Every Map task executes a function 

to extract the key/value pairs from the raw data 

internally the splits. 

 Map Function - Every key/value pair is fed into 

the user-defined Map function that can production 

zero, one or more intermediate key/value pairs. 

These pairs represent a temporary outcome, the 

intermediate data are kept in the local disks of the 

Mappers. 

 Shuffle Phase - The median key/value pairs are 

assigned to Reducers by means of a segmentation 

function in a manner such that all median key/value 

pairs with the same median key will be processed 

by the same detract task and hence by the same 

Reducer. These median key/value pairs are spread 

at random across the cluster, the master passes to 

Reducers the information about the Mappers's 

location, because each Reducer may be able to 

remotely read its input. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The Genral Footstep of MapReduce 

 Combiner Phase (Optional) - If the user-defined 

detract function is exchangeable and associative, 

and there is a remarkable repetition of intermediate 

keys produced by each Mapper, an optional user-

defined combiner function can be applied to the 

outputs of the Mapper [12]. The aim is to group, in 

pursuance of the intermediate key, all the 

intermediate values that were produced by the Map 

tasks of each Mapper. Normally, the same Reduce 

function code is used for the combiner function. If 

this combiner function is applied, each Mapper 

outputs only one median value per median key 

[13]. 

 Reduce  Function  -  Every  Reducer  passes  the 

assigned median keys, and the corresponding set of 

median values, to the user-defined decrease 

function. The output of the reducers is stored in the 

global file system for lastingness.

 Sort & Group - When the remote reads are ended, 

each Reducer sort the median data in order to group 

all its input pairs by their median keys. 

 

V. A MAPREDUCE EXECUTION 
 

The Apache Hadoop is the most famous open-source 

implementation of the MapReduce framework [2]. It is 

written in Java and has received contributions from big 

companies such as Facebook and others. The Google's 

MapReduce, Hadoop also employs two dissimilar 

layers. The Hadoop MapReduce Framework, a 

processing layer accountable for running MapReduce 

jobs and the HDFS, a distributed storage layer 

accountable for compatible storing the data among the 

cluster nodes. 

 

A. Processing Layer 

 

The entities associated with the processing layer are 

one master, named the JobTracker, and one or more 

workers, named the TaskTrackers. The main 

contribution of the JobTracker is to coordinate all the 

jobs running on the system and to allocate tasks to run 

on the TaskTrackers which periodically report to the 

JobTracker the headway of their running tasks. The 

Hadoop's scheduler makes each job [13] use the entire 

cluster and takes the jobs' priorities into account when 

scheduling them. This means that topmost priority jobs 

will run first. In spite of, Hadoop also supports other 

schedulers, including shared cluster schedulers that 

allow running jobs from several users at the same time.  
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In view of task scheduling, Hadoop does not build an a 

priori plan to set up which tasks are going to run on 

which nodes instead Hadoop take the plunge on which 

nodes to deploy each task in runtime. Example for 

employe nikhat a task, it is assigned the next one [14]. 

This means that should an employer nikhat all tasks 

related the data it stores locally, it may be fed tasks 

which entail acquire data from other workers. There are 

ten dissimilar places in the query-execution pipeline of 

Hadoop where User Defined Functions (UDFs) may be 

injected. A user of the framework can define how the 

input data is divided and how a divided is parsed into 

key/value pairs, for example. This side makes Hadoop 

is comfortably customizable MapReduce framework. 

 

B. Storage Layer 

 

The Hadoop DFS (HDFS) is a distributed file system 

designed to store unswerving less, i.e., once the data is 

written into the HDFS is not converted but can be read 

many times. The HFDS implementation uses three 

various entities first one NameNode, second one 

secondary NameNode and thired one or more 

DataNodes. A NameNode in charge of for storing the 

metadata of all lies in the distributed file system. In 

order to recover the metadata files in case of a 

NameNode lack of success, the SecondaryNameNode 

keeps a copy of the most recent checkpoint of the 

lesystem metadata.  

 

Every file in HDFS is echeloned into various fixed-size 

blocks, similar that each block is stored on any of the 

DataNodes. Hadoop replicates each block places them 

strategically in order to make better availability two 

replicas on DataNodes on the same rack and the third 

one on a various rack, to inhibit from loss of data, 

should an entire rack be liquidated. It is worth noting 

the difference between input divided and HDFS blocks. 

As long as an HDFS block is an indivisible part of a 

file that is stored in each node, an input divided is 

logical data that is processed by a Map task. There is 

no necessity for divided to be tied to blocks, and not 

even less.  

 

Think about the case where a file is divided by lines, 

such that each Map task processes one line. It may 

come about that a line over us from an HDFS block, 

i.e., the divided boundaries do not coincide with the 

HDFS block boundaries. In this situation, the Mapper 

processing that line must retrieve the next HDFS block 

to receive the final part of the line. 

 

VI. THE MAPREDUCE FRAMEWORK AND IT’S 

COMPONENTS 
 

The MapReduce is a programming model and an allied 

implementation for processing and generating 

volumetric data sets. Assume that programs written in 

this functional manner MapReduce are automatically 

parallelized and executed on a spacious cluster of 

commodity machines [15, 16]. In a primary 

MapReduce job, it consists of the following 

components. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. The Architecture & Components of 

MapReduce 

 

Job Client – This is submits MapReduce jobs to job 

tracker. 

Job Tracker – This is one part of a master node and it 

allocates job to task tracker.  

Task Tracker – This is one part of slave node and it 

track all task data. As soon as finished the task 

informed to job tracker. 

Pay Load – This is one type of applications, notably 

designed for MapReduce functions. 

Mapper – This is the prime intention of the mapper is 

mapping the input data to intermediate key/value pairs. 

Name Node – This is managing the HDFS Data. 

Data Node – This is searched advance data are 

attendance in processing places. 

Master Node – This is the prime intention of Master 

node is receiving job data from clients. 

Slavenode – This is runs Map and Reduce jobs. 

 

 

VII. THE MAPREDUCE USER INTERFACES 
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In this section provides some detail about user-facing 

aspects of the MapReduce framework. This helps you 

implement, configure, and tune your jobs in a fine-

grained way. 

 

Payload - In payload applications normally implement 

the Mapper and Reducer interfaces to provide the map 

and reduce methods. These form the core of the job. 



Job Configuration - In JobConf describe a MapReduce 

job configuration. JobConf is the primary interface for 

a user to mention a MapReduce job to the Hadoop 

framework for execution. The framework tries to 

honestly execute the job as mentioned by JobConf. 



Task Execution & Environment - The TaskTracker 

executes the Mapper/ Reducer task as a child process in 

a distinct jvm. After that child-task inherits the 

environment of the parent TaskTracker. The user can 

describe supplementary options to the child-jvm via the 

mapred. 



Job Submission and Monitoring - The Job is the 

primary interface by which a user job communicates 

with the Resource Manager. Job provides 

condescension to submit jobs, track their progress, 

access component task reports and logs, and get 

MapReduce cluster status details. 



Job Input - In the input format represents the input 

identification for a MapReduce job. The MapReduce 

framework relies on the input format of the job too. 

Again validate the input specification of the job. After 

that divide the input file into logical input, divide 

instances, each of which is then assigned to a personal 

Mapper. Again the RecordReader implementation used 

to gather input records from the logical input, divide 

for processing by the Mapper. 



Job Output - In the output format represents the output 

identification for a MapReduce job. The MapReduce 

framework relies on the output format of the job too. 

Again validate the output specification of the job for 

example, inspection that the output directory does not 

previously alive. 

 

 

 

VIII. THE MAPREDUCE PROCEDURES 

 

In this paper, we are discuss about two different 

MapReduce procedures firstly the single-job 

procedure, in which subdivide of work to tasks is done 

without taking document sizes into account and 

secondly the chain-job procedure, in which a first job 

downloads the documents (take the plunge their sizes) 

and performs some preparatory entity-mining, while a 

second job (chained with the first) sustain the mining 

over size-aware division of the contents to produce the 

accomplished NEM analysis. 

 

A. Single Job Procedure 

 

In the single-job procedure includes an initial stage that 

queries a search engine to receive the hits to be 

processed and prefabricate the distribution of tasks, 

followed by a subsequent stage of the MapReduce job 

itself, both shown in figure 4. Here master node (where 

the JobTracker executes) carries out preliminary 

processing. First, it queries a Web Search Engine, 

which comeback a set of titles, URLs, and snippets [17] 

etc. Subsequently, the master attempt to determine the 

URL content length, in order to preferable balance the 

downloading and processing of the URL contents in the 

MapReduce job. Again instate this is to perform an 

HTTP HEAD request for each URL earlier to 

downloading it. These processes again and again pops 

the top of the stack and inserts it to the divide with the 

least total size, until the stack is empty. When the 

assignment of URLs is finished the produced divide are 

stored in HDFS. At the subsequent stage of the single-

job procedure a number of mapper tasks are indite on a 

number of JVMs hosted by Cloud VMs. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Single-job design 

 

 

B. Chain Job Procedure 
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We have evolved a substitute MapReduce procedure 

that consists of two chained jobs (Jobs #1 and #2) as 

shown in figure 5. The appropriateness behind this 

design is the following Job #1 downloads the 

exhaustive document set and thus gains exact 

information [18] about content sizes. Here upon Job #2 

is now capable of performing a size-aware assignment 

of the remaining documents to tasks. At the same 

moment, we have confidence that most users 

panegyrize a quick NEM preview on a sample of the 

hits before getting the full-scale analysis. In Job #1 is 

designed to carry out such a preview the master node 

queries the search engine getting the beginning set of 

titles, URLs, and snippets. Then, it creates the 

beginning divided of the URLs without using any 

information about their sizes. Eventual after Job#1 

tasks in the first instance downloading documents 

while performing only limited-scale NEM analysis, 

there is no requirement to create much tasks than the 

number of JVM slots approachable. 

 
Figure 5. Chain-job design 

 

IX. THE MAPREDUCE PERFORMANCE 
 

The MapReduce may not endow the desired 

performance in inappreciable use cases, such as the 

selection scenario. In this section we describe the most 

pertinent of these techniques, like that indexing, data 

layouts, and co-location, which purpose at improving 

data accesses during the Map phase of selective query 

process. 

 

A. Indexing 

 

In a plain MapReduce framework, the execution of a 

job need that a full scan of the dataset is performed 

(example for reading all the records one by one) further 

if only a small subset of them is going to be selected. 

Additionally, all partitioned generate Map tasks even if 

some of them do not contain pertinent data and will not 

create any intermediate data. As well, in the Map 

phase, all blocks have to be perfectly 

 

fetched from disk, which insinuate that all attributes of 

all records are fetched to main memory without taking 

into account which ones the job is fascinated in [19]. 

This issue can keep away from if the input data are 

indexed before the mapping step takes place. 

Momentarily, an index is built for one attribute and 

consists in a list of various values of that attribute 

contained in the indexed data, as well as possible the 

positions where these values can be found in the input 

file. 

 

 Record Level Indexing 

 

Commonly, this access requires having the index inside 

each partition, which is then used at query time to 

select the applicable records from the partition, instead 

of reading the entire partition record by record [20]. 

 

 Split Level Indexing 

 

It has been attention that the execution time of a query 

depends on the number of waves of Map tasks that are 

executed, which in turn depends on the number of 

processed partition [21]. Additionally, the time to 

process a partition is dominated by the I/O time for 

reading its dataplus the overhead of commencement 

the Map task to process it. 

 

 Block Level Indexing 

 

In this case where the partition is comprised of several 

blocks, one can create block-level indexes. All blocks 

contain several records, these indexes have the 

potential to bring meaningful time savings, in 

pursuance of to the monitoring [21] block-level 

indexes map attributes values to blocks that contain at 

least one record with that attributes value. By means of 

these indexes, when processing a partition, the 

applicable blocks are loaded and processed, whereas 

the blocks familiar not to match the selection 

specification are omitted. 

 

 

B. Data Layout 
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The storage unit of HDFS consists in a fixed-size 

(generically 64MB to 96MB) block of data. Actually, 

the way the data are arranged within this block of data 

can much affect the repercussion times of the system. 

Now we call this inner organization of blocks the data 

layout. We now familiarize four various data layouts 

that may be applied on MapReduce. 

 

Row Oriented 

 

When utilization this layout all fields of one record are 

stored sequentially in the file, and several records are 

placed contiguously in the disk blocks. This layout 

endows rapidly data loading in many cases, the data to 

be stored is endow row-by-row, that means one entire 

record at a time. In Row-based systems are designed to 

adroitly process queries where several columns of a 

record required to be processed at the same time, the 

entire row can be brought back with a single access to 

the disk. 

 

Column Oriented 

 

When utilization this layout, datasets are vertically split 

by column, each column is stored independently and 

accessed only when the corresponding attribute is 

required. In this layout is well favorable for read 

operations that accessed a mini number of columns, 

since columns that are not applicable for the intended 

output are not read. As an outcome, record 

reconstruction may need network transfers to access the 

needed columns from various storage nodes. 

 

Column Groups 

 

In this layout consists in organizing all columns of a 

dataset in various groups of columns. The various 

column groups may have overlapping columns. The 

data within each column group is not connected to any 

particular data layout. It seems stored in a row or 

column-oriented way. A benefit of column groups is 

that it can keep away from the overhead of record 

reconstruction if a query desire an existing 

amalgamation of columns. 

 

PAX 

 

In this hybrid layout combines the [22] benefit of both 

row-oriented and column-oriented layouts. Every field 

of a record is on the same block as the row-oriented 

layout, make provision for low cost of record 

reconstruction. In spite of, within each disk page 

containing the block, PAX uses mini pages to group 

every values affiliation to each column. 

 

X. MAPREDUCE SCHEDULING ALGORITHMS 
 

In this section, we describe briefly scheduling 

algorithms is one of the most critical dimensions of 

MapReduce. There are many algorithms to address 

these matters with different techniques and outlook. 

Now a few of them get attention to improve data 

locality and few of them implements to provide 

synchronization processing. 

 

A. Fair Scheduling Algorithm 

 

The Fair scheduling is a method of assigning resources 

to jobs such that all jobs get on usual, an identical share 

of resources over time. Meanwhile a single job 

running, that job uses the entire cluster. When 

additional jobs are submitted tasks slots that free up are 

assigned to the recent jobs, because each job gets 

approximately the same amount of CPU time. 

Dissimilar the lapse Hadoop scheduler, which forms a 

queue of jobs, this lets, short jobs finish in pertinent 

time while not starving long jobs. It is also a simple 

way to [23] share a cluster between several of the 

others. The Fair Scheduler algorithm can range the 

number of concurrent running jobs [24] per user and 

per pool. This can be advantageous when a user must 

submit hundreds of jobs at one time, or to make sure 

that intermediate data does not fill up disk space on a 

cluster when too many simultaneous jobs are running. 

 

B. Hadoop On Demand (HOD) Scheduling Algorithm 

 

In this Hadoop On Demand (HOD) Scheduling 

Algorithm is a system for provisioning and managing 

unconstrained Hadoop MapReduce and Hadoop 

Distributed File System (HDFS) example on a shared 

cluster of nodes. These algorithms make it convenient 

for administrators and users to quickly setup and use 

Hadoop. The HOD is also a very advantageous tool for 

Hadoop developers and testers who requirement to 

share a physical cluster for testing their own Hadoop 

versions [23]. The HOD utilization the torque resource 

manager to do node allocation. In the allocated nodes, 

it can start Hadoop MapReduce and HDFS daemons. It 
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automatically originates the convenient configuration 

files (Hadoop-site.xml) for the Hadoop daemons and 

client. This algorithm also has the ability to distribute 

Hadoop to the nodes in the virtual cluster that it 

allocates. 

 

C. Capacity Scheduler Algorithm 

 

In this algorithm contrive to run Hadoop Map-Reduce 

as a shared, multi-tenant cluster in an operational 

affable manner while maximizing the throughput and 

the usage of the cluster while running Map-Reduce 

applications. This algorithm to allow sharing a huge 

cluster while giving every company a minimum 

capacity promise. The central idea is that the available 

resources [25, 23] in the Hadoop Map-Reduce cluster 

segregates among multiple organizations who 

collectively fund the cluster based on computing 

necessity. There is an added gain that a company can 

access any excess competence now being used by 

others. This endow elasticity for the company in a cost-

effective manner. 

 

D. Center-of-Gravity Reduce Scheduler Algorithm 

 

The Center-of-Gravity reduce scheduler algorithm to 

work designing a locality-aware, skew-aware alleviate 

task scheduler for reduction MapReduce network 

traffic [26]. The proposed scheduler algorithm attempts 

to schedule every alleviate the task at its center-of-

gravity node laid down [27] by the network locations. 

Regarding scheduling reducers at their center-of-

gravity nodes, they argue for reduce network traffic, 

which may possibly allow more MapReduce jobs to 

stick together on the same system [28]. 

 

XI. CONCLUSION 
 

In the real world, data processing and storage 

approaches are facing many challenges in meeting the 

persistently increasing insistence of big data. Thus, it 

becomes greatly challenging to operate on the 

enormous data. In the Big data area, MapReduce is one 

of the key approaches used for nursing giant data sets. 

MapReduce was introduced to extricate volumetric 

data, computational problems, and in particular 

designed to run on commodity hardware and its based 

on divide and conquer principles. This is because of its 

appreciable flexibility, which allows automatic 

parallelization and execution on a huge-scale cluster 

with more than thousands of nodes. In this paper, 

presents MapReduce concepts, footstep of MapReduce, 

execution of MapReduce, MapReduce framework and 

its components, we also highlight the MapReduce user 

interfaces. Finally, we investigated the procedures, 

performance, scheduling algorithms in MapReduce. 

These surveys aim to provide an extensive overview 

and big-picture to readers of this exciting area. 
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