
CSEIT1726256 | Received : 01 Dec 2017 | Accepted : 29 Dec 2017 | November-December-2017 [(2)6: 1062-1067]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2017 IJSRCSEIT | Volume 2 | Issue 6 | ISSN : 2456-3307

1062

Data Partitioning in Frequent Itemset on Bigdata Using Hadoop
Sindhuja

1
, M. Sridevi

2

1
Department of CNIS, G Narayanamma Institute of Technology and Science, Hyderabad, Telangana, India

2
Assistant Professor, Department of CNIS,G Narayanamma Institute of Technology and Science, Hyderabad,

Telangana, India

ABSTRACT

Generally FIM is one of primary concerns in data mining. Whereas the problems of FIM have been studied, that

standard and better solutions scale. This is generally the case when i) the sum of data tend to be extremely large

and/or ii) A MinSup threshold is very low. In this paper, I propose a highly measurable and parallel frequent item

set mining (PFIM) algorithm that is Parallel Absolute Top Down. PATD algorithm renders the mining process of

very large amount of databases (Terabytes of data) easy and compact. Its mining process is completed for just

parallel jobs, which dramatically reduce the mining runtime, communication cost and energy power utilization

overhead, in a disseminated computational platform. Based on an intellectual and efficient data partitioning

approach describe IBDP, PATD algorithm mines every data partition separately, relying on entire minimum support

(A MinSup) as of a Relative one. PATD contain extensively evaluated using real-world data sets. My experimental

results advise that PATD algorithm is considerably more capable as well as scalable than alternative approaches.

Keywords: Big Data, Data Mining , Frequent Itemset ,Machine Learning, MapReduce

I. INTRODUCTION

As Association Rule Mining follows a particular

method is intended to find out frequent patterns,

correlation, association from datasets such as relation,

transaction databases. Example: In real world, when

consumers purchase a sandwich it is probable to get

ketchup along. This is exactly how the association rules

mining works, Such that chronological pattern mining

is a process of connecting a topic of data mining with

identifying the similar patterns. When these are put in

use a problem occurs in FIM is a system or a process

which get place in a particular way for example: an

artist prefers to paint the background first and then

filling in the details, therefore this pattern is followed

frequently by him. FIM creates fragments of mining

instance of a particular portion; this is done due to lofty

input or output intensity. Because of which it is

essential to rapidity up the process, which is solid to

achieve .By introducing FIM which uses MapReduce

to solve the issue i.e., when a dataset in data mining

application is huge the sequential FIM algorithm

running on a single machine results is catastrophic.

Machine learning algorithms are classifies as being

supervised or unsupervised. Supervised algorithms

need humans to gives together input plus desired

output; unsupervised algorithms no require to be taught

with desired result data. Instead, they can use iterative

approach called deep learning to review data with

arrives at conclusions. Unsupervised knowledge

algorithms are worn for more complex processing jobs

for supervised learn systems. This methods involved in

machine learning as same to that of data mining it need

searching during data to seem for pattern and adjust

program actions accordingly. This happens because use

mechanism learns to personalize online ad delivery in

approximately real time. Past personalized marketing,

extra regular machine learning comprise fraud

detection, spam filtering, network security threat

detection, and building reports feeds.

Frequent Itemset Mining

Datasets in current data mining application become

excessively large. So, it might cause load balancing,

some redundant transactions transmitted among

computing nodes this causes to work load and network

traffic so that here improving presentation of FIM. It

Volume 2, Issue 6, November-December-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 1063

has convenient way of significantly shortening data

mining time of the application. Generally I use

sequential FIM algorithm but, those algorithms able to

run in an single machine that suffer a worse

performance due to limited computational and storage

resources, to defeat this difficulty I am focusing on

parallel FIM algorithms operating on clusters.

Mapreduce Programming Model

MapReduce is a assure parallel also scalable

programming model for data-intensive applications

plus scientific analysis. A Mapreduce programming

express large distributed computations as a sequence of

the parallel operations on data sets of key pairs. A

mapreduce calculation has two stages namely, the Map

along Reduce phases. Hadoop is an open source

execution of the mapreduce programming model. It is

worn for procedure huge datasets by paralleling them

amongst the computing nodes of a cluster. By

optimizing the parallel FIM, it results in load

balancing. Apriority and FP-growth are the categories

of FIM. The apriority generates list of candidates list,

using the bottom up approach it scans for the frequent

item sets are groups the frequently used candidates list.

To lessen the time taken for scanning FP-growth

algorithm was introduced which is scalable and

efficient, it compresses the storage by constructing the

prefix tree, which eliminate the generation of

candidates and saves the time which is required for

scanning.

The disadvantage of FP-growth is that is infeasible in

constructing the in memory FP tree, this becomes even

difficult when it come to multi dimensional database.

To overcome these faults the frequent items ultra

metric tree (FIU-tree) is used due to advantages like

reducing the input or output overhead, offer a usual

system of partitioning a dataset, compressed storage ,

recursively traverse and also enables mechanical

parallelization, load balancing, data distribution, with

fault tolerance on huge computing clusters which was

lacking in previously used algorithms. To solve the

above mentioned problems I incorporate a parallel

mining FIM algorithm call FIDOOP using MapReduce.

Data Partitioning in Hadoop Clusters

A partitioning a division of logical database or else its

constituent elements through different autonomous

part. Database partition is usually ended for

manageability, performance or availability reasons,

load balancing. Hadoop mapreduce make a decision

that the job begins set of partitions it may divide the

data. In presented data partition technique FIM aim is

to balancing computation load by equally distributed

data among nodes. However, the correlations amid the

records is often ignored which will lead to poor data

locality, resources wastage, network overhead will be

increased I build up FiDoop-DP is a parallel FIM

technique in such a huge data set is partitioned across a

hadoop clusters data nodes has to advance data locality.

FiDoop-DP using the MapReduce programming form

is proposed. The objective of FiDoop-DP is to get

better the presentation of parallel FIM on Hadoop

clusters. It is the Voronoi diagram-based data partition

system, such exploits correlations amongst

transactions. It places very analogous transactions

through data partition to advance locality with no

creating an extreme number of unnecessary

transactions. The proposed FiDoop- DP, which may

flexibly configured to produce a extensive range of data

sets to match the requirements of diverse test

requirements.

The FiDoop-DP contains four steps specifically, the

next mapreduce job is the spirit of the project where we

perform Voronoi based partitioning to get out the entire

frequent item sets.

In the initial mapreduce job, ecach mapper serially

reads all transaction from the local input and split on a

data node to produce local 1-itemsets,next all 1-

itemsets sharing the same key. The output of these

reduces include the all over frequent 1-itemsets beside

with their counts. Thenext step sorts the entire frequent

1-items in an declining order of frequency, the sorted

are saved in cache names F list, which becomes to the

succeeding mapreduce work in FiDoop-DP.

The next MapReduce job apply a second-round

examine the database to repartition database to form a

complete dataset for item groups in the map phase.

Apiece reducer conduct local FP-Growth based on the

partitions to generate all frequent patterns.

The final MapReduce job aggregates the subsequent

MapReduce jobs output to make every one of final

frequent patterns for each item.

Volume 2, Issue 6, November-December-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 1064

II. RELATED WORK

[1]Yaling Xun, Jifu Zhang, Xiao Qin, “FiDoop-DP:

Data Partitioning in FIM on Hadoop Clusters”, 2016.It

explains, A data partitioning approach term FiDoop-DP

by the Map Reduce programming model. The

overarching aim of FiDoop-DP to get better the

performance and similarity metric to make easy data-

aware partitioning. As an upcoming research direction,

I would relate this metric to examine advance load

balancing strategies on a heterogeneous Hadoop

cluster.

[2] I.Pramudiono& M.Kitsuregwa,” Fp-tax: Tree

structure based generalized association rule mining”,

2004. This paper describe, examination of data

portioning issues in parallel FIM. Major focus is on

map-reduce. Future job is improvement of Fidoop

which develop correlation amongst traction to partition

large datasets in Hadoop.

[3] X.Lin,” Mr-apriori: Association rules algorithm

based on mapreduce”,2014. Mainly spot on classical

Algorithm linking and snip step using prefix Itemset

based storage by hash table. It spot a few limits of

Apriori algorithm.

[4]S. Hong, Z.Huaxuan, C. Shiping, plus H.Chunyan,”

The learn of better fp-growth algorithm in

mapreduce”,2013.This explain, make cloud platform

for perform the parallel FP-growth algorithm based on

linked list plus PLFPG. This algorithm disparity upper

efficiency also scalability.

[5]M. Liroz-Gistau, R. Akbarinia, D. Agrawal, E.

Pacitti, and P. Valduriez,” Data partitioning for

minimize transport data in mapreduce”,2013.It state

that, Map Reduce job is execute more distributed

system poised of a master plus set of workers. Input is

separating into numerous splits along assigned to map

tasks. Upcoming job is evasion to present the

repartitioning in parallel. III.

III. IMPLEMENTATION

Parallel Counting: The initial MapReduce job count

the sustain values in the whole items residing in the

database to discover all frequent items or frequent 1-

itemsets in parallel. This step simply examines the

database once.

Sorting frequent 1-itemsets to FList: The succeeding

step sorts these frequent 1-itemsets in a lessening order

of frequency; the sorted frequent 1-itemsets are cached

in a catalog named FList. A Non-MapReduce

procedure due to its cleanness and the centralized

control Parallel.

FP-Growth: These steps of Pfp, where the map stage

plus lessen stage execute the after two significant

functions. Mapper - Grouping items plus generating

group-dependent dealings. First, the Mappers separate

every item in FList into Q groups. The record of group

is referred as group list or GList, where each group is

allocated a unique group ID (i.e., Gid). Then, the

transactions are partitioned into various groups

according to GLists. That is, all mappers of outputs

more than one key-value pair, where a key is a group

ID with its corresponding value is a produced group-

dependent transaction. Reducer - FP-Growth on group-

dependent partitions, Local FPGrowth is perform to

create local FIM.

Apiece reducer conducts local FPGrowth by handing

out different group-dependent partition one after other,

and exposed patterns are output in the final. The

following MapReduce work is a performance

bottleneck of the complete data mining process. The

map tasks apply a second-round scan to sort and prune

each transaction according to FList, followed by

grouping the sorted frequent 1-itemsets in FList to form

group list GList. Next, each transaction is placed into a

group-dependent data partition; multiple data partitions

are constructed.

Figure 1. PATD System Process.

Volume 2, Issue 6, November-December-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 1065

Each data partition corresponds with group identified

by Gid. The above partitioning approach ensures data

completeness with esteem to lone group of GList. A

downside is that such data completeness comes at the

cost of data redundancy, because a transaction might

have duplicated copies in multiple data partitions.so, I

used a voronoi based partitioning technique by which I

find every FIM and decrease the redundant transactions

Aggregating: The final MapReduce job create final

results by aggregate the output produce in Step second

mapreduce programming.

IV. APPLICATION AWARE DATA

PARTITIONING

Various efficient data partitioning strategies proposed

to get better the appearance of parallel computing

organizations. For case, Kirsten et al. develop two

general partitioning plans for generating entity match

jobs to shun memory bottlenecks and load inequity

taking to the count individuality of input data, Aridhi et

al. proposed a novel density-based data division

method for estimated large-scale frequent sub graph

mining to stability computational load amongst a set of

machines. Kotoulas et al. built a data distribution

mechanism based on clustering in elastic regions.

Data Partitioning Techniques

Generally our FIM plays a main role in data

partitioning when I have discuss in the bove proposed

system and as we discussed about Voronoi based

partition and Distance metric. Now, I am available to

discuss about pivot elements which plays a main role in

voronoi based partitioning to dividing a space as a

number of regions. For finding pivots I use K-means

technique.

K-means clustering means, technique of vector

quantization, it is fashionable for clustering study in

data mining. K-means clustering plan is to divider n

watching fit in to the nearest mean, serving to a

prototype of the cluster. This results of partition the

data liberty in voronoi cells. Next to the choice of

pivots, I calculate the distances from respite of the

objects of these pivots to determine a partition to which

each object belongs. I develop the LSH-based strategy

to implement grouping plus partitioning process. To

which MinHash is employes as a foundation for LSH.

MinHash is a quick solution to estimate how similar

two sets. It is gradually more becoming a popular

solution for large-scale clustering problems. MinHash

is divided as two steps in first step the huge data set is

formed into a signature. The data is represented in an m

X n matrix. N is symbolizing as transactions and M is

representing as objects. Rows denote the objects and

Column denotes the transactions.

hmin(T) = x, where h(x) = Min
n

i=1 (h(xi))

Here set the item as one if the item is in the transaction

or t is zero. On the basis of this matrix I make a

signature matrix, for every transaction I find a hash

value for which I have an minimum hash value, we

make it an transaction. In minhashing I performed a set

of comparisons. So, to overcome that problem I

introduced a partitioning method known as LSH-based

partitioning were it scans the every frequent itemsets

for the first time only.

1) If || p-q| | = R, then P rH (h(p) = h(q)) = P1

2) If ||p-q||=cR, then P rH (h(p) = h(q)) = P2

V. DATA CHARACTERISTIC

DIMENSIONALITY

FiDoop-Dp to efficiently lessen the quantity of

needless transactions. In contract a dataset with high

dimensionality have a extended average transaction

span; so, data partitions formed by FiDoop-DP has no

distinct discrepancy. Redundant transactions may liable

to formed for partitions that lack distinct

characteristics. The profit offered by FiDoop-DP for

high dimensional datasets become insignificant.

Data Correlation

FiDoop-DP judiciously group’s item with soaring

relationship has to grouped and clustering like dealings

jointly. In this mode, the quantity of unnecessary

dealings reserved on several nodes is significantly

reduced. Thus, FiDoop-DP is conducive to cutting

reverse both data transmission traffic plus computing

load.

VI. ALGORITHM USED: IBDP

1 //Job1 Input: Non-overlapping data partitions S =

{S1; S2,…….Sn}of database D

Output: Centroids

2 //Map Task 1

Volume 2, Issue 6, November-December-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 1066

3 Map(key: Split Name: K1, value = Transaction (Text

Line): V1)

4 Tokenize V1, to separate all items

5 emit (key: Item, value: Split Name)

6 //Reduce Task 1

7 Reduce(key: Item, list(values))

8 while values: hasNext () do

9 emit (key :(Split Name) values: next (Item))

10 //Job2 Input: Database D Output: Overlapping Data

Partitions

11 //Map Task 2

12 Study earlier job1 result one time in a key, values

(DS), somewhere key: SplitName and values: Items

13 map (key: Null: K1, value = Transaction (Text

Line): V1)

14 for SplitName in DS do if Items. Item ?V1?Ø; then

15 emit (key: SplitName, value: V1)

16 //Reduce Task 2

17 reduce (key: SplitName, list (values))

18 while values: hasNext () do

19 emit (key: (SplitName), values: next: (Transaction))

VII. EXPERIMENTAL RESULTS

Here Dataset link is used

https://data.gov.in/catalog/stateut-wise-traffic-

accidents-month-occurrence The method is simulated

in JAVA and it requires WAMP server tool, Eclipse,

and Hadoop for IDE and MySQL database. This part

present the answer of proposed FiDoop using map

reduces. The results are analyzed and evaluated like

 Accuracy

 Memory usage

 Execution time

 Accuracy

Show the comparison of accuracy for both existing and

proposed method. The correctness is improved

compared than existing system. Accuracy is define the

ratio is corrected predictions and t eh whole number of

predicted values.

Where a – true positive, b - false negative, c – false

positive, d – truenegative

Figure 2. Accuracy

Execution time

It shows the comparison of execution time in Apriori,

FP-Growth and FiDoop. The FiDoop provide the less

execution time compared than other methods. That

process is moved during their implementation as of

lone memory division to dissimilar memory segment

and it provide the delay until their run time. These are

generated in hardware and mostly occur in general

purpose OS.

CPU Time= I X CPI X T

I – number of instructions in the program

CPI – Average cycle pair instruction

T – clock cycle time

Memory usage

The memory utilization for Apriori, FP-Growth and

FiDoop. The Fi-Doop used the less memory utilization

compare than other methods.

VIII. CONCLUSION

I proposed a reliable and efficient MapReduce based

parallel FIA, explicitly PATD that has exposed

extensively efficient in conditions of runtime plus

scalability, data communication like energy

consumption. PATD takes the gain of efficient data

partitioning method IBDP. IBDP permit for an

optimized data placement on MapReduce. It allow

PATD algorithm to carefully plus quickly mine

extremely large databases. Such ability to utilize very

low lowest supports is mandatory when dealing with

Big Data and essentially hundreds of Gigabytes like

what I have completed in our experiments. Our

outcome show that PATD algorithm outperforms other

existing PFIM alternatives, also makes the dissimilarity

among inoperative and a victorious extraction.

Volume 2, Issue 6, November-December-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 1067

IX. REFERENCES

[1]. Yaling Xun, Jifu Zhang, Xiao Qin, FiDoop-Dp

Data Partitioning in Frequent Itemset Mining on

Hadoop clusters, 2016.

[2]. I. Pramudiono and M. Kitsuregawa, "Fp-tax:

Tree structure based generalized association rule

mining," in Proceedings of the 9th ACM

SIGMOD workshop on Research issues in data

mining and knowledge discovery. ACM, 2004,

pp. 60-63.

[3]. X. Lin, Mr-apriori: Association rules algorithm

based on mapreduce, a in Software Engineering

and Service Science (ICSESS), 2014 5th IEEE

International Conference on. IEEE, 2014, pp.

141"144.

[4]. S. Hong, Z. Huaxuan, C. Shiping, and H.

Chunyan, aoeThe study of improved fp-growth

algorithm in mapreduce, in 1st International

Workshop on Cloud Computing and Information

Security. Atlantis Press, 2013.

[5]. M. Liroz-Gistau, R. Akbarinia, D. Agrawal, E.

Pacitti, and P. Valduriez, aoeData partitioning for

minimizing transferred data in mapreduce,a in

Data Management in Cloud, Grid and P2P

Systems. Springer, 2013, pp. 1a"12.

[6]. Y. Xun, J. Zhang, and X. Qin, Fidoop: Parallel

mining of frequent itemsets using mapreduce,

IEEE Transactions on Systems, Man, and

Cybernetics: Systems, doi:

10.1109/TSMC.2015.2437327, 2015.

[7]. W. Lu, Y. Shen, S. Chen, and B. C. Ooi,

Efficient processing of k nearest neighbor joins

using mapreduce,a Proceedings of the VLDB

Endowment, vol. 5, no. 10, pp. 1016a"1027,

2012.

[8]. J. Leskovec, A. Rajaraman, and J. D. Ullman,

Mining of massive datasets. Cambridge

University Press, 2014.

[9]. B. Bahmani, A. Goel, and R. Shinde, Efficient

distributed locality sensitive hashing,a in

Proceedings of the 21st ACM international

conference on Information and knowledge

management. ACM, 2012, pp.2174a"2178.

[10]. P. Uthayopas and N. Benjamas, Impact of i/o and

execution scheduling strategies on large scale

parallel data mining, Journal of Next Generation

Information Technology (JNIT), vol. 5, no. 1, p.

78, 2014.

