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ABSTRACT 
 

Digital multipliers are widely used in arithmetic units of microprocessors, multimedia and digital signal processors. 

A redundant binary (RB) representation can be used when designing high performance multipliers due to its high 

modularity and carry-free addition. The conventional RB multiplier requires an additional RB partial product (RBPP) 

row, because an error-correcting word (ECW) is generated by both the radix-4 Modified Booth encoding (MBE) and 

the RB encoding. This incurs in an additional RBPP accumulation stage for the MBE multiplier. In this paper, a new 

RB modified partial product generator (RBMPPG) is proposed; it removes the extra ECW and hence, it saves one 

RBPP accumulation stage. Therefore, the proposed RBMPPG generates fewer partial product rows than a 

conventional RB MBE multiplier. Simulation results show that the proposed RBMPPG based designs significantly 

improve the area and power consumption when the word length of each operand in the multiplier is at least 32 bits. 

Keywords :  Binary Multiplier, Verilog, Partial Product Generator, ECW, RBMPPG, MBE, RBPP, RB MBE 

Multiplier, Normal Binary, MBE 

 

I. INTRODUCTION 

 

A normal binary (NB) multiplication by digital circuits 

includes three steps.  In the first step, partial products 

are generated; in the second step, all partial products 

are added by a partial product reduction tree until two 

partial product rows remain. In the third step, the two 

partial product rows are added by a fast carry 

propagation adder. Two methods have been used to 

perform the second step for the partial product 

reduction. A first method uses 4-2 compressors, while a 

second method uses redundant binary (RB) numbers. 

Both methods allow the partial product reduction tree 

to be reduced at a rate of 2:1. The redundant binary 

number representation has been introduced by 

Avizienis to perform signed-digit arithmetic; the RB 

number has the capability to be represented in different 

ways. Fast multipliers can be designed using redundant 

binary addition trees. A  RBPP row can be obtained 

from two adjacent NB partial product rows by inverting 

one of the pair rows.An additional error correcting 

word is also required by both the RB and booth 

encoding.Therefore,the number of RBPP accumulation 

stages required by power of two word length multiplier 

is given by 

NRBPPAS =       
 

 
    

                    =n-1, if N=2
n
                                (1) 

If the ECW can be removed, an RBPP accumulation 

stage is saved, so resulting in improvements of 

complexity and critical path delay for a RB multiplier. 

The number of accumulation stages in conventional 32-

bit multiplier can be minimized by removing ECW. 

 

Alternatively, a high-radix Booth encoding technique 

can reduce the number of partial products. However, 

the number of expensive hard multiples (i.e., a multiple 

that is not a power of two and the operation cannot be 

performed by simple shifting and/or complementation) 

increases too [14-16]. Besliet al. [16] noticed that some 

hard multiples can be obtained by the differences of 

two simple power-of-two multiplies. A new radix-16 

Booth encoding (RBBE-4) technique without ECW has 

been proposed in [14]; it avoids the issue of hard 

multiples. A radix-16 RB Booth encoder can be used to 

overcome the hard multiple problem and avoid the 

extra ECW, but at the cost of doubling the number of 
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RBPP rows. Therefore, the number of radix-16 RBPP 

rows is the same as in the radix-4 MBE.  However, the 

RBPP generator based on a radix-16 Booth encoding 

has a complex circuit structure and a lower speed 

compared with the MBE partial product generator [10] 

when requiring the same number of partial products. 

 

II. REVIEW OF BOOTH ENCODING AND RB 

PARTIAL PRODUCT GENERATOR 
 

2.1 Radix-4 Booth Encoding 

 

Booth encoding has been proposed to facilitate the 

multiplication of two's complement binary numbers .It 

was revised as modified Booth encoding (MBE) or 

radix-4 Booth encoding [18]. The MBE scheme is 

summarized in Table I, where A =aN-1a N-2….a 2a 1 a0 for 

the multiplicand, and  B= bN-1 bN-2 …..b2b 1b0 for the 

multiplier. The multiplier bits are grouped in sets of 

three adjacent bits. The two side bits are overlapped 

with neighboring groups except the first multiplier bits 

group in which it is {b1, b0, 0}. Each group is decoded 

by selecting the partial product shown in Table I, where 

2A indicates twice the multiplicand, which can be 

obtained by left shifting. Negation operation is 

achieved by inverting each bit of A and adding ‘1’ 

(defined as correction bit) to the LSB [10-13]. Methods 

have been proposed to solve the problem of correction 

bits for NB radix-4 Booth encoding (NBBE-2) 

multipliers. However, this problem has not been solved 

for RB MBE multipliers 

Table 1. MBE SCHEME 

 

b2i+1, b2i, b2i-1 Operation 

000 

001 

010 

011 

100 

101 

110 

111 

0 

+A 

+A 

+2A 

-2A 

-A 

-A 

0 

 

 

2.2 RB Partial Product Generator 

 

As two bits are used to represent one RB digit, then a 

RBPP is generated from two NB partial products [1-6]. 

The addition of two N-bit NB partial products X and Y 

using two’s complement representation can be 

expressed as follows [6]  

 

where   is the inverse of Y, and the same convention is 

used in the rest of the paper. The composite number 

(X, ) can be interpreted as a RB number. The RBPP is 

generated by inverting one of the two NB partial 

products and adding -1 to the LSB. Each RB digit XI   

belongs to the set {1, 0,  }; this is coded by two bits as 

the pair (Xi
-
,Xi

+
) 

 

Note that   = −1. RB numbers can be coded in several 

ways. Table II shows one specific RB encoding [6], 

where the RB digit is obtained by performing  Xi
+
- Xi

-
. 

                      

Table 2. RB ENCODING 

Xi
+ 

Xi
- 

RB 

DIGIT(Xi) 

0 

0 

1 

1 

0 

1 

0 

1 

0 

  

1 

0 

 

Both MBE and RB coding schemes introduce errors 

and two correction terms are required: 1) when the NB 

number is converted to a RB format, -1 must be added 

to the LSB of the RB number; 2) when the multiplicand 

is multiplied by -1 or -2 during the Booth encoding, the 

number is inverted and +1 must be added to the LSB of 

the partial product. A single ECW can compensate 

errors from both the RB encoding and the radix-4 

Booth recoding. The conventional partial product 

architecture of an 8-bit MBE multiplier [5-6] is shown 

in Fig. 1, where b_p represents the bit position, pij
+
 or 

pij
-
 is generated by using an encoder and decoder (Fig. 

2) [10]. An N-bit CRBBE-2 multiplier includes N/4 

RBPP rows and one ECW; the ECW takes the form as 

follows: 

 

ECW = E(N/4) 0 F(N/4) 0……0Ei20Fi0….0E120F10 

 

where i represents the i th row of the RBPPs, Ei2∈ 

{0,1}and FI0∈ {0, 1}. In Fi0 , a -1 correction term is 
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always required by RB coding. If Fi0 also corrects the 

errors from the MBE recoding, then the correction term 

cancels out to 0. That is to say that if the multiplicand 

digit is inverted and added to 1, then Fi0 is 0, otherwise 

Fi0 is -1. The error-correcting digit Ei2  is determined 

only by the Booth encoding: 

 

   Ei2={
  
  

                    
                 

   

 

 
Figure 1. Conventional RBPP architecture for an 8-bit 

MBE multiplier 

 

As shown in Fig. 1 the first RBPP row, i.e. PP1 consists 

of the first partial product row PP1
+
 and the second 

partial product row PP1
- 

PP1
+ 

=p19
+
p18

+
…..p10

+ 
and PP1

- 
=p19

-
p18

-
…..p10

-
 where  

p19
+
 and  p19

+
 are the sign extension bits, so 

  

 
According to Eq. (2), the sign extension bit P

+
29  is also 

the inverse of p28
+
. 

 

 
Figure 2. An encoder and decoder of MBE scheme 

 

III. PROPOSED RB PARTIAL PRODUCT 

GENERATOR 
 

A new RB modified partial product generator based on MBE 

(RBMPPG-2) is presented in this section; in this design, 

ECW is eliminated by incorporating it into both the two 

MSBs of the first partial product row (PP1
+
) and the two 

LSBs of the last partial product row(ppN/4
-
) 

 

3.1 Proposed RBMPPG-2 

 

Figure 3 illustrates the proposed RBMPPG-2 scheme for an 

8x8-bit multiplier. It is different from the scheme in Figure 1, 

where all the error-correcting terms are in the last row. 

ECW1 is generated by PP1 and expressed as 

 

ECW1 = 0 E12 0 F12                                                       (7) 

The ECW2 generated by PP2 (also defined as an extra ECW) 

is left as the last row and it is expressed as: 

 

ECW2=0  E22 0 F20                                                       (8) 

To eliminate a RBPP accumulation stage, ECW2 needs to be 

incorporated into PP1and PP2. As discussed in Section 2.2 

for Fi0and as per Table I, F20 is determined by 

 

F20 = {
  
 

    
                          

                  
                    (9)            

 

As per Table 1, when b5b4b3 = 111,-0=0 can  used. Therefore, 

F20 can be expressed as follows 

F20 = {
  
 

    
                       
                      

                         (10) 

 

By setting PP2
+ 

to all ones and adding +1 to the LSB of
 
the 

partial product, F20 can then be determined only by  as 

follows:
 

F20= {
   
  

  
    
    

                                                   (11) 

A modified radix-4 Booth encoding and a decoding circuit 

for the partial product PP2
+ 

are proposed here ; an extra 3-

input OR gate is then added to the design of [10] (Fig. 2). 

The three inputs of the additional OR gate are  5, 4 and  3 

When b5b4b3=111 it is clear that  5 4  3= 000, P2i
+
= 1, PP2

+
 

is set to all ones. So, E22 and F20 in ECW2 are now 

determined by b7b6b5 without b4,b3. Although the complexity 

is slightly increased compared with the previous design 

(Figure  2), the delay stage remains the same. 

 

In this work, Q19
+ 

Q18
+ 

Q21
-
 and Q20

-
 are used to represent the 

modified partial products 

q2(-2)
-
 and q2(-1)

-
 as follows 

E2 =    {
    

           
     
      

                               (12) 

 

. q2(-2)
-= q2(-1)

- ={
  
  

     
      

                 (13) 

 

 

 

 

 

 

 

 

 

 

Figure 3. (a) the first new RBMPG-2 architecture 
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Figure 3. (b) further revised RBMPG-2 architecture 

 

 

Figure 3. (c) the final proposed RBMPG-2 by totally 

eliminating ECW2 and further combining E2 into, Q19
+ 

Q18
+ 

Q21
-
 and Q20

- 

 

                                    Table  3. 

       

b7b6b5         E22F20 E2q2(-2)
-q2(-1)

- 
P21

- 
P20

- 

000 

001 

010 

011 

100 

101 

110 

111 

           

0 0 

           

            0       0 

          

1      0 

1             

0       0 

 11 

000 

 11 

000 

011 

100 

011 

000 

0 

a1 

a1 

a0 

   

   

   

0 

0 

a0 

a0 

0 

1 

   

   

0 

 

So the following three cases can be distinguished:1) 

when E2=0,Q19
+
,Q18

+
,Q21

- 
and Q20

-
 remain unchanged as 

Q19
+
=P19

+
, Q18

+ 
= P18

+
,Q21

-
=P21

-
Q20

-
=P20

-
 .2)when E2=1 a 

1 is added to P19
+
 P18

+
P21

-
 P20

-
.when E2=-1 1 is 

substracted from P19
+
P18

+
P21

-
 P20

-
.The relationships 

between these partial product variables are summarized 

in Table 4. 

 

                                    Table  4. 
p19

+p18
+p21

-p20
- Q19

+Q18
+Q21

-Q20
-
 

                   E2=0 

Q19
+Q18

+Q21
-Q20

- 

       E2=1 

    Q19
+Q18

+Q21
-Q20

- 

            E2=-1 

0100 

0101 

0110 

0111 

1000 

1001 

1010 

0100 

0101 

0110 

0111 

1000 

1001 

1010 

  0101 

  0110 

  0111 

 1000 

  1001 

  1010 

  1011 

0011 

0100 

0101 

0110 

0111 

1000 

1001 

1011 1011   1100 1010 

 

Therefore, as per table 4 the logic functions of Q19
+ 

Q18
+ 

Q21
-
 

and Q20
-
 can be expressed and Boolean functions of Q19

+ 
Q18

+ 

Q21
-
 and Q20

-
 can be Further minimized as below 

 

                (14) 

   (15) 

  (16) 

        (17) 

circuit diagram can be expressed in figure 5                                                                             

 

(a) 

 

(b) 

Figure 5. the circuit diagram of modified partial 

product variables (a) Q18
+ 

and Q19
+ 

(b) Q21
- 
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In the second stage, a 4-stage RBA summing tree is 

used to sum 16 RB partial products. Each RBA block 

contains 64 RB full adder (RBFA) cells and a varying 

number of RB half adder (RBHA) cells depending on 

where it is located. The proposed RBMPPG-2 can be 

applied to any bit RB multipliers with a reduction of a 

RBPP accumulation stage compared with conventional 

designs. The 64-bitRB-NB converter converts the final 

accumulation results into the NB representation, which 

uses a hybrid parallel prefix/carry select adder. 

 

IV. RESULTS & DISCUSSIONS 
 

 
        

(a) Top Level schematic of RBMPG-2 

                                                                             

 

 
(b) Simulation results of RBMPG-2 

Figure 6. (a) shows the top level schematic of 

RBMPG-2 and fig (b) shows the simulation results of 

propsed multiplier 

In the above results a,b are the multiplicand and 

multiplier and both are of 32 bits.Where y is the result 

and it is  of 64 bits.for convenience all are shown in 

signed decimal number.in the above fig we have taken 

multiplicand and multiplier as 24 and 16 and the output 

is 384. 

 

By using proposed method we can reduce the the no.of 

accumulation stages as shown in table5. 
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Table 5. 

 

 

V. CONCLUSION 
 

A new modified RBPP generator has been proposed in 

this paper; this design eliminates the additional ECW 

that is introduced by previous designs. Therefore, a 

RBPP accumulation stage is saved due to elimination 

of ECW. The new partial product generation technique 

can be applied to any 2
n
 bit RB multipliers to reduce 

the number of RBPP rows from N/4 + 1 to N/4. 
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