
CSEIT1726266 | Received : 25 Nov 2017 | Accepted : 22 Dec 2017 | November-December-2017 [(2)6: 973-987]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2017 IJSRCSEIT | Volume 2 | Issue 6 | ISSN : 2456-3307

973

Strategy List- An Efficient Querying Structure for RFX Compact

Storage

Radha Senthilkumar
1
, Ponsy. R. K. Sathiabhama

2
, Priyaa Varshinee

3

1,3
Department of Information Technology, MIT Campus of Anna University, Chennai, Tamil Nadu, India
2
Department of Computer Technology, MIT Campus, Anna University, Chennai, Tamil Nadu, India

ABSTRACT

Extensible Markup Language (XML) has been regarded as a de facto form for data exchange over the Internet. The

rapid growth of XML repositories has provided the intention to design and develop systems that can store and query

the XML data efficiently. The self-describing nature of XML has a great flexibility and wide acceptance but on the

other hand, the huge size of the XML documents is a major drawback. The huge document size means that the

amount of information that has to be transmitted, processed, and stored and queried is often larger than that of other

data formats. Many researchers are working to compactly store XML document in main memory and query the

same. So far researchers have implemented the compact storage structure using pointer-based approach and succinct

approach for XML. Existing query processing algorithms for nested query and also querying Intra and Inter

structured documents beyond simple queries are not efficient for compact storage structures. In this paper an entirely

new technique is proposed which process XPath queries in the RFX (Redundancy Free Compact Storage) a non-

pointer-based approach, using Strategy List. As far as know, no similar approach has been proposed for XML yet.

Performance has been evaluated using the Benchmark datasets. The performance results demonstrate that the path

evaluation steps for the compact storage structure are highly efficient and outperform the other tested systems.

Keywords: RFX Compact storage, strategy list, querying, XPATH classification

I. INTRODUCTION

Many markup language applications in industry,

government, and academia which began as SGML [21]

applications in the 1985-1998 timeframe have

subsequently migrated to XML [8] using XML DTDs,

W3C XML Schemas, or other schema languages. XML

has emerged as a powerful format for representing data

in a wide variety of fields, from technical data to

finance to healthcare. Unlike traditional data formats,

such as relational data, XML has a hierarchical

structure that can be used to model virtually any type of

data. In addition, XML is far more flexible and more

tolerant to change than other formats. XML presents a

number of interesting challenges and opportunities for

data storage and querying. Relational databases and

full-text search mechanisms that have been the

backbone of many applications are not designed to

manage XML content effectively. A new class of

databases has emerged that is designed specifically to

manage XML content. Typically called 'XML Native

Databases' or just 'XML databases,' they incorporate

functionality that greatly improves the searching, and

manipulation and management of XML to produce the

most effective XML data management solution.

The World Wide Web Consortium (W3C), the

standards organization that developed XML, has also

developed many standards that can be used to store,

search, access and process XML data. XML databases

take advantage of these standards to provide efficient

and precise query, access, storage, and processing

capabilities not found in traditional database

technology. The result is that applications using XML

databases are more efficient and better suited for

managing XML data. XMill [10], XGRIND [13],

XQuec [1], XQZip [3], XBW [18] are some of the

XML storage systems for XML data each with their

own merits and demerits. Redundancy Free Compact

Volume 2, Issue 6, November-December-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 974

XML (RFX) is one such storage or more precisely, a

compression system for XML proposed by [14]. Some

of the key features of RFX compact storage are its

redundancy elimination and support for one to many

relationships in XML documents.

1.1. One-to-many relationships in XML documents

There are three types of document relationships defined

for XML documents, and any XML document falls

under one of these three categories. The three types of

document relationships [5] are as follows- a)

Containment Relationship b) Intra Relationship

document c) Inter Relationship document. Querying an

XML storage system and returning results with

minimum time complexity, is one of the most

happening topics in which many researches are

working on. RFX Compact Storage is a storage system

for storing XML documents and, mainly intended to

develop a unique technique for query optimization and

evaluation in this system.

1.2. Why a Unique Technique is needed for Query

Optimization in RFX Compact Storage

RFX Compact Storage combines the advantages of

both relational and hierarchical data models. If this

“self optimized” nature of RFX Compact Storage is

exploited, then query evaluation time of the XPATH

query can be effectively reduced. This necessitates a

unique technique that leverages the advantages of RFX

Compact Storage. RFX Compact Storage makes it

possible to store the topology and meta data of the

XML document in the main memory itself. The

topology layer of RFX stores the order information of

the XML Document using a novel approach. XML

document has different levels of nesting and can be

modeled as a k-ary tree. RFX tends to store the order

information of this k ary tree in theoretic minimum of

2n bits by which it is evident that the topology is

available in main memory. Zhang [11] provided a

succinct approach using balanced parenthesis encoding

to store blocks of data. Similar to balanced parenthesis

encoding, RFX uses a novel approach to encode the

order of the XML document rather than nesting

information called as order encoding [14].

1.3. Organization of the article

The remainder of the paper is organized as follows:

Section 2 provides an overview of related work.

Section 3 states the proposed optimization technique

derived from the strategy list. Section 4 describes the

Querying methodology. Section 5 presents the results

of experimental evaluation of proposed approach. The

paper is concluded in Section 6.

II. RELATED WORKS

XMill [10], the first compressed and non-queriable

XML scheme was invented to provide a means for

compact storage. Although XMill achieves a good

compression ratio, it does not support querying nor

updating. XGRIND [13], uses top down query

evaluation strategy using SAX [19] parser, which

makes a depth-first-search traversal of the XML

document. It maintains information about its current

location in the XML document and the contents of the

set of XML nodes that it is currently processing. SAX

parser supports exact-match or prefix-match queries,

where the query path and the query predicate are

converted to the compressed form. During parsing of

the compressed XML document, when the parser

detects that the current path matches the query path,

and that the compressed data value matches the

compressed query predicate, it outputs the matched

XML fragment. For range or partial-match queries,

only the query path is compressed. While parsing the

compressed XML document, when the parser detects

that the current path matches the query path, the

associated data value is decompressed and used for

evaluating the match. Compared to XMill, XGRIND

has a lower compression ratio but supports these types

of queries.

The XPRESS [9] system is better over XQZIP [3] in

terms of decompression times but XGRIND is

relatively lagging behind both XPRESS and XQZIP. It

supports Exact-match, Prefix-match, XPath Axes:

Child and descendant attribute types of node search and

navigation. Both XGRIND and XPRESS require top-

down query evaluation, and do not support set-based

query evaluation such as structural joins. XGRIND and

XPRESS are homomorphic compressors where both

support direct querying of compressed data by retaining

the document structure (tags and data values

separately). XPRESS separates the context and tag and

both are coded respectively, then the two parts are

assembled after encoding. While XGRIND uses

dictionary encoding and Huffman encoding for tags

and data, XPRESS adopts reverse arithmetic encoding

Volume 2, Issue 6, November-December-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 975

which maps the entire path expression to intervals for

tags and diverse encoding methods for text according

to the data types. The encoding technique enables

XPRESS to achieve better compression ratios and

higher query performance than XGRIND. However,

these methods do not support the evaluation of multi-

conditional queries over compressed documents.

XQZIP[3] uses several operators like select and project

where first step is converting XQuery[24] expression to

an internal Nested Relational Sequence similar to PAT

internal form corresponding to Ozsu[7]). Queries

having multiple and deeply nested predicates with

mixed structure-based, value-based, and aggregation

conditions done here is not supported by XGRIND. It

supports a wide range of query types namely recursive

path expression, aggregation, ancestor-descendant,

conditional queries, conditional with recursive paths

and further combinations of the same. The number of

nesting levels does not affect the running time of the

queries used in the experiments. This is because the

structure of the XML document stored as an in-

memory tree saves the time for looking up the

corresponding indexes from the database. It follows

both top-down and bottom-up query evaluation

strategies. The use of the SIT (Structure Index Tree) in

XQzip, minimizes the tree edges while the SIT, indexes

the tree nodes and does not compress the textual XML

data items and hence it saves space.

XQueC[1] proposed by Andrei Arion , compresses

each data item individually and this usually results in a

lower compression ratio (compared to XMill). An

important feature of XQueC is that it supports efficient

evaluation of XQuery by using a variety of structure

information and other indexes. However, these

structures together with the pointers pointing to the

individually compressed data items, incurs huge space

overhead. The query processor evaluates XQuery

queries over compressed documents. The complete set

of operators of XQuery allows for efficient evaluation

over the compressed repository. Compression and

Querying System (XCQ)[12], is a compression method

which separates structure from data. It was developed

based on a technique called DTD Tree and SAX Event

Stream Parsing (DSP). The tree structure is

compressed using the DTD information and the text is

compressed using a standard method like gzip. The

compressed documents in XCQ adopt a partitioned

path-based data grouping which supports evaluating

queries without running a full decompression. XCQ

also supports querying over partially decompressed

documents. Queries involving only the structure of the

document can be answered without decompressing the

data Stream. It has a better compression ratio than

XMill at the expense of compression time, if no

partitioning is made on the data streams in XCQ. XCQ

also achieves, a better compression ratio and

compression time than XGRIND.

Further YFILTER[4] aims to provide fast, matching of

XML encoded data and transformation of the matched

XML data based on specific requirements. Two

extended query types are implemented here. The first

type of query done in YFILTER is selection query

where the predicates can be Exact Matching (equality

comparison) or Range matching (inequality comparison

involved).The other type is aggregation type of queries

where sum, average types of functions can be used for

computation. This system has no compact storage

system operations involved. Xcpaqs[20] is an XML

compressor with path query support .It is a hybrid

compressor which separates structure and context

information from XML document. It also keeps

homomorphism relation between compressed and

original XML document. Xcpaqs encodes path and tag

respectively. But more complex operators such as

aggregation and join across objects on XML document

are not supported.

In [14], the author had proposed the basic structure for

RFX Compact Storage and querying. [17] enhanced this

storage structure to perform Intra and Inter document

querying unambiguously. Query optimization techniques

for Intra [15] and Inter relational [16] XML documents

have been already proposed. [17] had developed a

strategy to optimize any complex XPATH query that

ends up in an efficient query plan for the Compact

Storage which applies for all types of document

relationships. Matthias Brantner [2] proposed kappa join

operator to optimize a correlated query. His approach

works when one query is dependent and another is

independent, whereas optimization technique in [17]

works even when both queries are dependent on the

external producer. However, [17] does not cover

exhaustive XPATH query classification and has been

designed mainly for nested XPATH queries. In this paper,

the efficiency of strategy list for queries are explained.

Also this paper proposes a novel XPATH classification

which to the best of our knowledge is exhaustive.

Volume 2, Issue 6, November-December-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 976

III. TYPES OF QUERY

A XPATH[22] query navigates within a XML

document and retrieves information. It is a language for

selecting nodes from a XML document. XPath 1.0 is

widely implemented and used, either on its own (called

via an API from languages such as Java, C# or

JavaScript), or embedded in languages such as XSLT

or XForms and was recommended in 1999. XPath

2.0(current version), was Recommended in 2007. A

number of implementations exist but are not as widely

used as XPath 1.0. Classifying XPATH queries

provides valuable scope for testing the performance of

query processor in different workloads. A list of

XPATH functionalities have been selected which to the

best of our knowledge are complete. Tabulated the

functionalities to demonstrate how those functionalities

are covered in different XPATH queries. The

functionalities have been derived from XPATH use

cases [23].

3.1 XPATH functionalities

Single phrase

These are the simplest queries which are a single word

or sequence of words.

Eg. //title , /books/book/title

Axes and Predicate

An axes is either a forward axes or a reverse axes. An

axes that contains the context node or nodes that are

after the context node in the document order is a

forward axes. An axes contains the context node or

nodes that are before the context node in the document

order is a reverse axes. A predicate filters is a node-set

with respect to an axes to produce a new node-set. For

each node in the node-set to be filtered, the Predicate

Expression is evaluated with that node as the context

node.

Eg., para[position()=3]. => PREDICATE

Descendant, parent, following-sibling, preceding-

sibling => AXES

Query Across the Content

This functionality is used to query across XML element

boundaries. These Boundaries include XML tags: Start-

Tags, End-Tags, and Empty-Element Tags. Descendant

XML tags and attribute values are removed from the

string to be queried by tokenization before the query.

At the XQuery Data Model level tags are a syntactic

element.

Eg., Find all book chapters containing the phrase "one

of the best known lists of heuristics is Ten Usability

Heuristics".

/books/book[count(.//chapter ftcontains "one of the

best known lists of heuristics is Ten Usability

Heuristics")>0]

Wildcard matching

This functionality illustrates queries which use

wildcards to substitute for any other character or

sequence of characters to a word or a part of a word..

Eg. Find all books with the word "test" with a one

character suffix in the text.

/books/book[count(./content ftcontains "test." with

wildcards)>0]

Prefix-Infix-Suffix matching

Character wildcards may be prefix (appended before

the first character), infix (inserted into a word), or

suffix (appended after the last character).

Eg.(suffix query) Find all books with the word "test"

with a three to four character suffix in the text.

/books/book[count(./content ftcontains "test.{3,4}"

with wildcards)>0]/(@number|./content)

Ordered (Query)

Distance

Ordered distance queries finds sequences of words

allowing up to a specified number of intervening

words.

Eg. Find all books with information on "software

developers". /books/book[count(.//content ftcontains

"software" ftand "developer" with stemming distance at

most 3 words)>0]

Window

This functionality enables ordered queries to search

within a window, within a sentence or within a

paragraph.

Eg. Find all books about "users feeling well-served".

/books/book[count(.//content ftcontains "users" ftand

Volume 2, Issue 6, November-December-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 977

"feeling" ftand ("well served" ftor "well-served") with

stemming ordered window 15 words)>0]

Unordered (Query)

Distance

These are same as ordered distance queries except that

the words need not be in the specified sequence.

Eg. Return all books, listing books with text on

"software" first. /books/book[count(.//content

ftcontains "software" ftand "developer" with stemming

distance at most 3 words)>0]

Window

Similar to ordered window queries , unordered window

queries enable unordered queries to search within a

window, sentence or within a paragraph.

Eg Find all books about users feeling “well served”

/books/book[count(.//content ftcontains "users" ftand

"feeling" ftand ("well served" ftor "well-served") with

stemming unordered window 15 words)>0]

Stemming

This functionality invoke a stemming algorithm which

returns noun, verb, adjective, and adverb forms of a

word or root of a word in singular and plural.

Eg. Find all books with the word "test" in the text.

/books/book[count(.//content ftcontains "test" with

stemming)>0]

Thesaurus

This functionality illustrates queries which return

synonyms or related words identified by thesauri,

dictionaries, and taxonomies.

Eg. Find all introductions which quote someone.

/books/book[count(.//introduction ftcontains "quote"

with thesaurus at

http://bstore1.example.com/UsabilityThesaurus.xml"

relationship "synonyms")>0]

Stop word

These use cases query a phrase, one word of which has

been identified as a stop word via a stop word list.

Eg. Find all books with the phrase "planning then

conducting" in the text where "then" is treated as a stop

word./books/book[count(.//content ftcontains "planning

then conducting" with stop words at

"http://bstore1.example.com/StopWordList.xml")>0]

Diacritics

The main use of diacritics is to change the sound value

of the letter to which they are added. XPATH

implements this functionality to differentiate.

Eg. Verify the existence of a "résumé" in the papers of

John Wesley Usabilityguy.

doc("http://bstore1.example.com/full-

text.xml")/books/book[count(.//content ftcontains

"résumé." with wildcards diacritics sensitive)>0]

Aggregation

An aggregation operation computes a single value from

a collection of values. An example of an aggregation

operation is calculating the average daily temperature

from a month's worth of daily temperature values.

Eg. Find all book titles containing the word "usability".

/books/book[count(./metadata/subjects/subject

ftcontains "web site" ftand "usability")>0]

Logics

This functionality includes queries containing logical

expressions: or, and, the unary not, and not, etc

Eg Find all books which do not belong in a collection

on "usability testing".

/books/book[count(. ftcontains ftnot "us.* testing" with

wildcards)>0]

Quantification

There are two types of quantification- existential and

universal quantification. Existential quantification is

used to find a word and a phrase in any instance of an

element across the siblings of the same element.

Universal quantification finds two words in every

instance of an element.

Eg. Existential quantification: Find all books with the

phrase "web site" and the word "usability" in any

subject.

/books/book(some $s1 in ./metadata/subjects/subject

satisfies ./metadata/subjects/subject ftcontains "web

site") and (some $s2 in ./metadata/subjects/subject

satisfies ./metadata/subjects/subject ftcontains

"usability")

Eg. Universal quantification:

/books/book(every $pub in .//publisher satisfies ($pub

ftcontains “ersatz” ftand “publications”))

Multi Lingual

As implied by the name, this functionality enables

multilingual content in the XML document to be

queried.

Volume 2, Issue 6, November-December-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 978

Eg. Find all book subjects containing the phrase (n-

gram) "网站".

/books/book/metadata/subjects/subject[. ftcontains "网

站" language "zh"]

3.2. XPATH Functionalities Spreadsheet

The table1 provides insight to variety of queries by the number and combination of functionalities they cover.

Some functionality always occurs in conjunction with one more functionality. For example prefix matching

always occurs with wild card functionality. Such a relationship can be specified as “functionality1 is dependent on

functionality2”.

Table 1. Coverage of XPATH functionalities in Queries

S No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 a b a b

1 -                

2  -               

3   -       
4    -   
5     -  
6

a    -    
b     -   

7 a    -   
b     -  

8         - 
9      -   
10   -  
11    -
12          - 
13            - 
14            -
15    -

 - is dependent on  – Possible combination

Query Examples

Query 1

Functionalities: phrase query, stemming, unordered

distance (0 to 2 intervening words)

Abstract Query: Find all books with "improve" "web"

"usability" in the short title.

XPATH:

/books/book[count(./metadata/title/@shortTitle

ftcontains "improve" ftand "web" ftand "usability" with

stemming distance at most 2 words)>0]/metadata/title

Query 2

Functionalities: phrase query, wildcard (suffix) (1)

Abstract Query: Find all books with the word "test"

with a one character suffix in the text.

XPATH: /books/book[count(./content ftcontains

"test." with wildcards)>0]

Query 3

Functionalities: phrase query, and query, existential

quantification

Abstract Query: Find all books with the phrase "web

site" and the word "usability" in any subject.

XPATH:/books/book(some $s1

in./metadata/subjects/subject

satisfies ./metadata/subjects/subject ftcontains "web

site") and (some $s2 in ./metadata/subjects/subject

satisfies ./metadata/subjects/subject ftcontains

"usability")

Query 4

Functionalities: phrase queries, stemming, and query

Abstract Query: Find all books with the phrase

"manuscript guides" in the short title and the phrase

"user profiling" in a component title

XPATH: none

IV. STRATEGY LIST

Query processor is the most important component of

any storage system. Without the ability to retrieve the

stored data, any storage strategy is despicable. Also,

efficiency in terms of time followed by space has to be

considered while querying. In this paper, novel data

structure called Strategy List to support efficient

Volume 2, Issue 6, November-December-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 979

querying in RFX Compact Storage is proposed.

Strategy List is based on divide and conquer approach.

The basic approach, architecture, supported functions

and design of the strategy list are described in the

forthcoming subsections.

4.1 Divide and Conquer

XML query languages like XQuery and XPATH

provide rich set of features to retrieve information from

XML documents. Each XML storage system has its

own querying methodology to implement querying in

the same. RFX storage system is one such system

wherein we implement strategy list querying and

discuss its efficiency with respect to existing

methodologies in other storage systems. The basic idea

behind strategy list is “divide and conquer”. As a

matter of fact, any complex query is built with more

than one simple query. Hence, the complex query can

be broken down into simple queries, which take less

time to execute. Two possible forms of simple queries

is shown in figure 1a and 1b.

 Figure 1a. Simple query-form1 Figure 1b. Simple query-form2

Where, „a‟ is any element node of the XML document.

The strategy is to break any complex query into more

than one simple query in one of the above stated forms

and order the functionalities involved in the query. This

strategy particularly applies for existentially quantified

queries where the XPATH query is correlated [kappa

join], though it works well with other query types too.

Here the effectiveness of our strategy with some

examples are described. Query 1 has been selected

from [XPATH usecases].

Query 1: /books/book[count(.//content ftcontains

“users” ftand “feeling” ftand (“well served” ftor “well-

served”) with stemming ordered window 15 words)>0]

This query selects those books whose content contains

“users feeling well-served (or) well served” within a

window of 15 words. The overhead in this query is due

to the join operations that occur at conjunctions and

disjunctions. This query includes both independent and

guide operations.

Definition 1: Guide operations are those operations

which cannot be performed independently and are

always performed in conjunction with some other

independent operation.

Definition 2: Independent Operations are those

operations which can be executed independently

irrespective of the occurrence of some other operation

in the query.

For example, “stemming” is a guide operation guiding

the independent operation “ ftcontains”.

The independent operations involved in Query 1

includes ftor(OR), ftand(AND), ftcontains(CONTAINS)

and count. The guide operations include stemming and

ordered window.

This query can be executed efficiently in RFX by

retrieving all the positions of the result node without

condition and then filtering the positions step by step.

The independent operations specified sequentially are

applied on the results of previous step. The general

querying method in RFX for simple queries is

described in section 4.2.

The following is the list of steps after query 1 has been

broken.

1. /books/book

2. .//content

3. ftcontains “users”

4. ftand feeling

5. ftand well-served/well served

6. count

([/ | //]a([condition])*)+

book[/bookstore/@specialty=@style]

*[@specialty]

book[@style]

author[last-name = "Bob"]

author[degree and award]

([/ | //]a)+

/students/student/name

/dblp//author/first name

bookstore//book/excerpt//emph

price/@exchange

book/*/last-name

Volume 2, Issue 6, November-December-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 980

7. (check)result>0

GUIDE OPERATIONS for steps 3,4,5 – stemming,

ordered window 15 words.

Once the order of operations has been known, the

operations are queued according to the order in the

strategy list and then executed.

Query 2 : Nested Query

//restaurants//food[/price>

//standards/food/price]/availability

The above is a correlated query [kappa join]. While

/price is the dependent query (dependent on the path

//restaurants//food) “//standards/food/price” is the

independent query (because it is independent of the

preceding path in the XPATH

expression”//restaurants//food”). However, in usual

query execution for each price value in the dependent

query, the independent query is executed once which is

not necessary.

Solving the independent and dependent queries

separately is the scope for efficient execution in this

query. Strategy list does this with the aid of node

queues which will be described shortly.

After the query is broken, the execution steps contain

queries

1. S=//standards/food/price

2. T=//restaurants//food/price

3. R= S intersection T

4. A=//availability

5. Select those positions of availability (A) which are

nearer to positions in R

It should be clear by now, how divide and conquer

approach applied to XPATH querying, improves query

efficiency without any optimization explicitly being

employed.

Query 3 :/books/book

This query is evaluated in RFX as follows

1. ID of the books is fetched from Element Table

2. ID of the „book‟ is found from ET(Element Table)‏

3. Parent Id of the „book‟ is verified

4. Since book is the last node of the query, the location

of 980ccurrences of „id‟ of „book‟ in element structure

mapping is noted.

5. Filter the locations that which belong to element

alone using order encoding.(A data may have same id

as „book‟. The locations corresponding to data id

should be omitted).

6. Select all element, attribute , text nodes whose level

is greater than book node (those which come under

book node).

Figure 2. Sample XML document

Figure 3. Output for Query4 and Query5

Query 4 : //book[@isbn=112345]

This query is evaluated in RFX as follows

1. ID of the book is fetched from ET*

2. ID of „isbn‟ is fetched from AT* and is checked if it

belongs to the book element.

3. ID of the data „112345‟ is found from ADT*

4. Check if „112345‟ belongs to „isbn‟ by seeing if the

attribute id of the data „112345‟ and the id of „isbn‟ are

one and the same.

5. If they are same search for the location of id „112345‟

in the element structure mapping

6. Find the location of book id in element structure

mapping that which is nearest to location of „112345‟.

7. Select all element, attribute , text nodes whose level

is greater than the selected book node (those which

come under the selected book node).

Results from the sample XML document in Figure 2

are given in Figure 3

4.2. Query Processing Architecture in RFX

Compact storage

Volume 2, Issue 6, November-December-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 981

Query processing architecture for RFX is given in

Figure 4. The query analyzer analyzes the input

XPATH query and validates its syntax. If the query is

syntactically valid, the query is unnested, semantic

validation is done and the query is split up according to

the operator precedence table in Appendix B. Then for

each sub query, a node queue is created and the

operations in the sub query are queued. The list is

processed and the results are returned. Each node

queue corresponds to a particular sub query, which is a

simple query. Example for query split up and ordering

is given below.

4.3. General Querying In RFX Compact Storage

 Input (XPATH query) Query Invalid

 Error

 Query valid

Figure 4. Query Processing Architecture in RFX

Query 5 : /books/book[count(.//content ftcontains

“users” ftand “feeling” ftand (“well served” ftor “well-

served”))>0]

Split Up phase

After Step 1: Split point- „[„

1. $result = $result1[$result2]

2. $result1=/books/book

3. $result2= count(.//content ftcontains “users”

ftand “feeling” ftand (“well served” ftor

“well-served”))>0

After Step 2: Split point – ‘(„

1. $result = $result1[$result2]

2. $result1=/books/book

3. $result2= count($result3)>0

4. $result3= .//content ftcontains “users” ftand

“feeling” ftand ($result4)

5. $result4=“well served” ftor “well-served”

After Step 3: Split point – ‘ftcontains„

1. $result = $result1[$result2]

2. $result1=/books/book

3. $result2= count($result3)>0

4. $result3= .//content $result5 ftand “feeling”

ftand ($result4)

5. $result4=“well served” ftor “well-served”

6. $result5= ftcontains “users”

After Step 4: Split point – ‘ftand„

1. $result = $result1[$result2]

2. $result1=/books/book

3. $result2= count($result3)>0

4. $result3= .//content $result5 $result6 $result7

5. $result4=“well served” ftor “well-served”

6. $result5= ftcontains “users”

7. $result6= ftand “feeling”

8. $result7= ftand ($result4)

After Step 5: Split point – ‘ftor„

1. $result = $result1[$result2]

2. $result1=/books/book

3. $result2= count($result3)>0

4. $result3= .//content $result5 $result6 $result7

Query Analyzer

and Validator

Query Split up

Strategy List

Builder

Strategy List

Processor

Output (XML nodes)

Volume 2, Issue 6, November-December-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 307

5. $result4=“well served” $result8

6. $result5= ftcontains “users”

7. $result6= ftand “feeling”

8. $result7= ftand ($result4)

9. $result8= ftor “well-served”

The algorithm for Query Analysis and Query split up is given in figure 5a and 5b.

 Figure 5a. Algorithm for analysis phase

4.4 Stepwise Optimization and Evaluation Using

Strategy List

Divide Phase

Build the Strategy List

Processing Phase

Synthesis of Node Queues

Figure 6. Query Phases

During the “divide phase”, the query is broken down

and the operation sequence is found to build the

strategy list. Then each node queue is synthesized and

results are combined according to the linkers to find the

final query result. The query phases have been given in

order in Figure 6.

4.5. Strategy List Structure

Divide and conquer approach of querying is

implemented with Strategy List. Strategy List is a

heterogeneous list containing node queues and linkers.

Each node queue contains in it a simple query or a

sequence of operations with a set of guide operations.

As described in section 4.1., the sequence of operations

which are ordered, speed up the query execution. Also

all the node queues are independent of each other and

can be run in parallel, which is the most highlighting

feature of the Strategy List.

4.5.1. Node Queue

The node queue is a queue in which each element

represents an independent operation. For example if an

element of the node queue is /book, then the operation

is to select all book nodes from the current node. If the

element in node queue is “ftcontains “user””, then the

operation is to select only those nodes with the term

“user” from current result nodes. A query may be

composed of one to many node queues depending upon

its structure. A nested or correlated query contains

alteast two node queues, one for dependent and the

other for independent query.

4.5.2. Linkers

Linkers connect two node queues. They determine the

relationship between the node queues they connect.

The following are the five types of linker nodes which

are self explanatory.

Return Phase

Return Results

Algorithm 1: sub_query_list_Analysis (Query)

4. Read I = Query

5. if (query valid)

a. return error

6. if (I is correlated)

a. then for each $q = independent query in I

i. L= empty set

ii. Oi = find_step($q)

iii. L = L U Oi

b. return L

7. else

a. return(find_steps($q))

endif

Algorithm 2: ordered_steps find sub_query_list_Analysis

(Query)

1. Read I = Query

2. if (query valid)

a. return error

3. if (I is correlated)

a. then for each $q = independent query in I

i. L= empty set

ii.

Volume 2, Issue 6, November-December-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 982

1. Correlation_starts

2. Correlation_ends

3. Conjunction

4. Disjunction

5. Query_ends

The linkers Correlation_starts and Correlation_ends are

used when the query is correlated or nested. These

linkers are used to connect node queues of dependent

and independent sub-queries. Conjunction and

disjunction are used for conjunctive nested queries like

//student[examination/@id= //exam[grade < ’B’]/@id

and @id =

/lecture[title=‟NCT‟]/helpers/helper/@student]/name

and disjunctive nested queries like

//student[examination/@id=//exam[grade< ‟B‟]/@id or

@id =

/lecture[title=‟NCT‟]/helpers/helper/@student]/name.

Query_ends marks the end of execution

4.6. Query Evaluation

Examples for strategy list building

Query6

/books/book[count(./metadata/title/@shortTitle

ftcontains “improve” ftand “web” ftand “usability”

with stemming distance at most 2 words) >

0]/metadata/title

This query retrieves all books with words

“improve”, ”usability”, and “web”. The independent

operations in the query are „ftcontains‟, „ ftand‟.

Guiding operations are „stemming‟ , „distance 2 words‟.

Strategy List for Query6 is given in figure 7

/books/book

./metadata/title/@shortTitle

ftcontains “improve”

ftand “web”

ftand “usability”

count

Check (result>0)

/metadata/title

Figure 7. Strategy list for Query4

In case of Query6, the query contains only a single node queue. The guide operations which apply to fcontain also

apply to subsequent ftand and ftor.

Query7

/books/book(some $1 in ./metadata/subjects/subject satisfies ./metadata/subjects/subject ftcontains “web site”) and

(some $2 in ./metadata/subjects/subject satisfies ./metadata/subjects/subject ftcontains “usability”)

This query finds all books with “web site” and “usability” in any subject. Clearly this is an existential

quantification query. Strategy list for the same is given below.

Figure 8. Strategy List for Query 7

The main context of the query lies in the node queue

before the linker “correlation_starts”. After the linker

“correlation_ends”, no node queues are there. Hence,

the resultant nodes will be „book‟ nodes of XML

document. The strategy List for for Query 7 is shown

in Figure 8.

/books/book ./metadata/subjects/subject

ftcontains “web site”

satisfies

./metadata/subjects/subject

ftcontains “web site”

satisfies

Guide Operations:

Stemming, distance 2 words

Correlation_starts

Conjunction

Correlation_ends

Query_ends

Volume 2, Issue 6, November-December-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 983

V. EXPERIMENTAL RESULTS

We had implemented our approach in JAVA. All of the

experiments were performed on a PC with Pentium4, 3

GHz CPU, 1GB memory and 80 GB hard disk. The

Operating System is Windows XP.

5.1. Execution Time

The first metric we chose for performance evaluation is

query execution time which includes the time to build

the strategy list followed by scalability. We had

compared the querying time with XQZip+ and

XGRIND . As XQZip is not an open source software,

we had adopted the values of its query execution time

from [XQzip].

The test queries has been listed in Appendix A. The set

of queries that have been selected are from [XQZip].

The test queries cover a wide spectrum of queries,

ranging from simple to complex join queries. As

XQZip does not support complex join and order based

predicates, Q4 and Q5 of XMark fail for the same.

The test queries are run on various benchmarks

including

XMark
1
 the XMark documents model an auction

database with deeply-nested elements. The XML

document instances of the XMark benchmark are

produced by the xmlgen tool of the XML benchmark

project. For our experiments, we generated three XML

documents using three increasing scaling factors.

DBLP
2
 presents the famous database of bibliographic

information of computer science journals and

conference proceedings.

Lineitem
3
 is an XML representation of the

transactional relational database benchmark (TPC-H).

Shakespeare
4
 represents the gathering of a collection

of marked-up Shakespeare plays into a single XML file.

It contains many long textual passages.

Treebank
5
 is a large collection of parsed English

sentences from the Wall Street Journal. It has a very

deep, non-regular and recursive structure.

Characteristics of listed datasets have been given in

table 2

Table 2. Benchmark datasets and their chracteristics

Data Source Size (MB) Depth Tags/Attrs E_num A_num

XMark 111 11 86 1666315 381878

DBLP 148 6 41 3883112 471124

Treebank 82 36 252 2437666 1

Shakespeare 7.3 6 23 179072 0

Lineitem 30.8 3 19 1022976 1

Query Execution Time (in seconds) for XQZip+, RFX and XGRIND is given in table 3. The cases where the query

fails have been left blank.

Volume 2, Issue 6, November-December-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 984

Table 3. Query Execution Time for XQZip+, RFX and XGRIND

1http://monetdb.cwi.nl/xml/
2http://kdl.cs.umass.edu/data/dblp/dblp-info.html
3http://www.cs.washington.edu/research/xmldatasets/
4http://www.ibiblio.org/xml/examples/shakespeare/
5http://www.cis.upenn.edu/~treebank/

 Figure 9a. Query Performance on XMark Figure9b. Query Performance on Lineitem

0.001

0.01

0.1

1

10

Q1 Q2 Q3 Q4 Q5

E
x
e
c
u

ti
o

n
 t

im
e
 i
n

 s
e
c
o

n
d

s

Queries

Query Performance on Xmark(111 MB)

XQzip+

RFX-List

XGRIND

0.0001

0.001

0.01

0.1

1

Q1 Q2 Q3 Q4 Q5

E
x
e
c
u

ti
o

n
 T

im
e
 in

 s
e
c
o

n
d

s

Queries

Query Performance on LineItem (30.8)

XQzip+

RFX-List

XGRIND

0.0001

0.001

0.01

0.1

1

Q1 Q2 Q3 Q4 Q5

E
x
e
c
u

ti
o

n
 T

im
e
 i
n

 s
e
c
o

n
d

s

Queries

Query Performance on
Shakespeare(7.3 MB)

XQzip+

RFX-List

XGRIND

0.001

0.01

0.1

1

10

Q1 Q2 Q3 Q4 Q5

E
x
e
c
u

ti
o

n
 T

im
e
 in

 s
e
c
o

n
d

s

Queries

Query Performance on Treebank
(82 MB)

XQzip+

RFX-List

Volume 2, Issue 6, November-December-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 985

Figure9c. Query Performance on Shakespeare Figure9d. Query Performance on Treebank

 Figure9e. Query Performance on DBLP Figure10. Scalability graph

The graphs in Figure 9a, 9b, 9c, 9d, and 9e illustrate

the query performance of Strategy List in RFX

compact storage for each data set. The corresponding

data values have been tabulated in Table 3. Q4 and Q5

are join queries which fail in both XQZip and

XGRIND.

5.2. Scalability

The building time of strategy list for XMark Q3, Q4

and Q5 has been recorded for various document sizes.

The resulting scalability graph is shown in Figure 10.

The figure clearly portrays the scalability of our

approach. The values of list building time has been

listed in table 4

Table4. Time taken to build strategy list on various document sizes

VI. CONCLUSION AND FUTURE WORK

In this paper, we had designed a unique data

structure to query RFX Compact Storage. Our

proposed querying scheme has scored well in terms

of execution time as well as scalability. One of the

main advantages of strategy list is the parallel

execution of query parts (node queues).In contrast to

[17] which mainly concentrates on nested queries

and XML document relationships, in this paper we

give attention to various XPath functionalities and

structural complexity of the queries.

In future, we plan to test our technique in

combination with PAT optimization proposed in [7].

We also plan to extend out work in the direction of

multi query processing.

VII. REFERENCES

[1]. Arion and et. al. XQueC: Pushing Queries to

Compressed XML Data. In (Demo)

Proceedings of VLDB, 2003.

[2]. M. Brantner, S. Helmer, C-C. Kanne and G.

Moerkotte. Kappa-join:Efficient Execution of

Existential Quantification in XML Query

languages, in the Proceedings of 4th

International XML Database Symposium,

XSym 2006 Seoul, Korea, September 10-11,

2006, in: Lecture Notes in Comput. Sci., vol.

4156, Springer, 2006, pp. 1-15.

[3]. Cheng, J., Ng, W.: XQzip: Querying

compressed XML using structural indexing.In:

EDBT. (2004) 219-236

0.0001

0.001

0.01

0.1

1

Q1 Q2 Q3 Q4 Q5

E
x
e
c
u

ti
o

n
 T

im
e
 i
n

 s
e
c
o

n
d

s

Queries

Query Performance on DBLP(148 MB)

XQzip+

RFX-List

XGRIND

0.0001

0.001

0.01

0.1

1

10

1 10 100 1000 10000T
im

e
 t
a
k
e
n

 t
o

 b
u

il
d

 S
tr

a
te

g
y
 li

s
t
in

s
e
c
o

n
d

s

Document Size in MB

Scalability Graph

Q5

Q4

Q3

Doc size

(MB)

Query

1 10 100 1000 10000

Q3 0.0005 0.001 0.361 2.9 6.89

Q4 0.001 0.0014 0.588 3.56 9.63

Q5 0.0015 0.0016 0.369 5.79 11.23

Volume 2, Issue 6, November-December-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 986

[4]. Y. Diao, P. Fischer, M.J. Franklin, and R. To.

YFilter: Efficient and Scalable Filtering of

XML Documents. In Proc. of the 18th Intl.

Conf. on Data Engineering, pages 341--342,

San Jose, California, February 2002.

[5]. Document Relationships in XML :

www.developer.com/xml/article.php/1575731

[6]. Dunren Che, Karl Aberer, Tamer Ozsu M,

"Query Optimization in XMLStructured

document databses", The VLDB Journal ,

2006.

[7]. Dunren Che, Karl Aberer, Tamer Ozsu M,

"Query Optimization in XML Structured

document databses", The VLDB Journal ,

2006.

[8]. Extensible Markup Language (XML) 1.0 (2nd

Edition) W3C Recommendation, October

2000. http://www.w3.org/TR/REC-xml/

[9]. Jun-Ki Min, Myung-Jae Park, and Chin-Wan

Chung. XPRESS: A Queriable Compression

for XML Data. In Proceedings of the 2003

ACM SIGMOD international conference on

Management of data, pages 122-133. ACM

Press, 2003.

[10]. H. Liefke and D. Suciu. XMill: an efficient

compressor for XML Data. Proc. of ACM

SIGMOD Conf. on Management of Data, p.

153-164, 2000

[11]. Ning Zhang, Varun Kacholia, and M. Tamer

Ozsu. A Succinct Physical Storage Scheme for

Efficient Evaluation of Path Queries in XML.

In Proceedings of the 20th International

Conference on Data Engineering (ICDE),

pages 54-65. IEEE Computer Society, 2004

[12]. W. Ng, W. Y. Lam, P. T. Wood and M.

Levene. XCQ: A Queriable XML

Compression System. An International Journal

of Knowledge and Information Systems,

(2005).

[13]. Pankaj M. Tolani and Jayant R. Haritsa.

XGRIND: A query-friendly XML compressor.

In Proceedings of the 18th International

Conference on Data Engineering (ICDE),pages

225-234. IEEE Computer Society, 2002.

[14]. Radha Senthilkumar, Priyaa Varshinee, Dr. A.

Kannan Designing and Querying a Compact

Redundancy Free XML Storage, The Open

Information Systems Journal, 2009 (Journal

Under Publication)

[15]. Radha Senthilkumar, A. Kannan, M.

Bhuvaneswari, "Query Optimization for Inter

Document Relationships in XML Structured

Document," iccima,pp. 25-32, International

Conference on Computational Intelligence and

Multimedia Applications - Vol.2 (ICCIMA

2007), 2007

[16]. Radha Senthilkumar, A. Kannan, V. Prasanna,

P.Hindumathi , "QueryOptimization for Intra

Document Relationships in XML

StructuredDocument", International

conference on open-source systems

&Technologies (ICOSST 2007).

[17]. Radha Senthikumar , S. Priyaa Varshinee, S.

Manipriya, M. Gowrishankar, A. Kannan,

"Query Optimization of RFX Compact Storage

using Strategy List", ADCOM December 2008

[18]. Paolo Ferragina, Fabrizio Luccio, Giovanni

Manzini, and S. Muthukrishnan. Compressing

and searching xml data via two zips. In

WWW, pages 751-760, 2006.

[19]. SAX : http://www.saxproject.org/

[20]. H. Wang, J. Li, J. Luo, and Z. He. XCpaqs:

Compression of XML Document with XPath

Query Support. In proceedings of the 2004

IEEE International Conference on Information

Technology: Coding and Computing

(ITCC‟04).

[21]. World Wide Web Consortium :Standard

Generalized Markup Language (SGML) :

www.w3.org/MarkUp/SGML/

[22]. World Wide Web Consortium. XML Path

Language (XPath) Version 1.0.

http://www.w3.org/TR/xpath/, W3C

Recommendation 16 November 1999.

[23]. World Wide Web Consortium. XPATH use

cases: http://www.w3.org/TR/xpath#section-

Node-Set-Functions

[24]. World Wide Web Consortium. XQuery 1.0:

An XML Query Language.

http://www.w3.org/TR/xquery/, W3C Working

Draft 22 August 2003.

Appendix A

XMark :

Q1: /site/people/person/pro_le[@income[[. >= \100"]

& [. <= \1000"]]]

Q2: (.. [//open auctions[//bidder]]//closed

auction[[buyer] & [seller]](//buyer/@person

+ //seller/@person + //description))

Volume 2, Issue 6, November-December-2017 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 987

It retrieves the buyer/seller IDs and the description of

those closed auctions which have

both a buyer and a seller, if the document contains

open auctions which have a bidder.

Q3: //people/person[@id = ..//closed

auction[[buyer/@person=nnsite/*/open auction

[[bidder/$C>=100] j [[initial <= \30"] & [current <=

\80"]]]/seller/@person] & [price

>= \50"]]/seller/@person]/emailaddress

It retrieves the email addresses of those people who

are sellers of some items which

were bidden at the price of >= $50 and the buyers of

these items are the sellers of

some bidding items which have either >= 100

bidders or have an initial price <= $30

and a current price >= $50.

Q4 People with an income equal to the current price

of some item {join on values}

/site/people/person[profile/@income=/site/open_auct

ions/open_auction/current]/name

Q5 Categories that are reachable from a given

category in i steps, for i >= 1. {parametric join on

keys} generator

Y(i)/id(.)/name for i = 1,2,...

Y(1) = /site/catgraph/edge[@from =

"category0"]/@to

Y(i) = /site/catgraph/edge[@from = Y(i-1)]/@to for

i >= 2

DBLP:

Q1: /dblp/inproceedings/booktitle

Q2: /dblp/inproceedings[booktitle = \SIGMOD

Conference"]

Q3: /dblp/inproceedings[year[[. >= 1998] & [. <=

2000]]]

Q4: //inproceedings[[[publisher] & [editor]] &

[author]]/journal

Q5: (//proceedings[[[publisher $=\IBM"] &

[editor ?=\van"]] j [author/$C < 3]] (isbn

+ journal[. ! = \TKDE"]))

It retrieves the ISBN and non-TKDE journal of those

proceedings which have either (1)

a publisher whose name starts with ($=) \IBM" and

an editor whose name contains

(?=) \van"; or (2) less than 3 authors.

Lineitem:

Q1: /table/T/L TAX

Q2: /table/T[L TAX = \0.02"]

Q3: /table/T[L TAX[[. >= \0.02"] $ [. <= \0.04"]]]

Q4: (//*(L ORDERKEY + L PARTKEY + L

SUPPKEY + L LINENUMBER + L QUANTITY +

L DISCOUNT + L EXTENDEDPRICE + L TAX +

L RETURNFLAG + L COMMENT + L

LINESTATUS + L SHIPDATE + L

COMMITDATE + L RECEIPTDATE + L

SHIPINSTRUCT + L SHIPMODE))

Q5: //L DISCOUNT/$U

Shakespeare:

Q1: /PLAY/ACT/SCENE/SPEECH/SPEAKER

Q2: /PLAY/ACT/SCENE/SPEECH[SPEAKER =

\PHILO"]

Q3:/PLAY/ACT/SCENE/SPEECH[SPEAKER[[. >=

\MARK ANTONY"] & [. <\PHILO"]]]

Q4: // SPEECH[![STAGEDIR]]/SPEAKER/$C

Q5: [//SPEECH/SPEAKER[[. ! = \LUCE"] & [n_

[[![n_/STAGEDIR]] j [LINE/$C > 5]]]]]

It returns true if there is a speech, whose speaker is

not \LUCE", that either (1) does

not have a STAGEDIR or (2) has more than 5 lines.

It returns false otherwise.

Treebank:

Q1: //VP//NP//VP//NPnnVP.nVP

Q2: //PP//PP//PP//PP//PP//PP//PP//PP

Q3: //PP/.PP//PP/.PP//PP/.PP//PP/.PP

Q4: //PPnnPP//NP

Q5: //PP[//PP]//NP

The five queries test Strategy list‟s performance on

very nested data. They test a mixture of

axes: descendant (//), descendant-or-self (/.), ancestor

(nn) and ancestor-or-self (.n).

Appendix B

The table consists of XPATH operators in decreasing

order of their precedence.

